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Abstract
How does the time complexity of a problem change when the input is given succinctly rather than
explicitly? We study this question for several geometric problems defined on a set X of N points in
Zd. As succinct representation, we choose a sumset (or Minkowski sum) representation: Instead
of receiving X explicitly, we are given sets A, B of n points that define X as A + B = {a + b | a ∈
A, b ∈ B}.

We investigate the fine-grained complexity of this succinct version for several Õ(N)-time com-
putable geometric primitives. Remarkably, we can tie their complexity tightly to the complexity of
corresponding k-SUM problems. Specifically, we introduce as All-ints 3-SUM(n, n, k) the following
multivariate, multi-output variant of 3-SUM: given sets A, B of size n and set C of size k, determine
for all c ∈ C whether there are a ∈ A and b ∈ B with a + b = c. We obtain the following results:
1. Succinct closest L∞-pair requires time N1−o(1) under the 3-SUM hypothesis, while succinct

furthest L∞-pair can be solved in time Õ(n).
2. Succinct bichromatic closest L∞-Pair requires time N1−o(1) iff the 4-SUM hypothesis holds.
3. The following problems are fine-grained equivalent to All-ints 3-SUM(n, n, k): succinct skyline

computation in 2D with output size k and succinct batched orthogonal range search with k given
ranges. This establishes conditionally tight Õ(min{nk, N})-time algorithms for these problems.
We obtain further connections with All-ints 3-SUM(n, n, k) for succinctly computing independent
sets in unit interval graphs.

Thus, (Multivariate) k-SUM problems precisely capture the barrier for enabling sumset-succinct
computation for various geometric primitives.
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1 Introduction

Consider an algorithmic problem on an input set X of N points in Zd. How does the time
complexity of the problem change when the input is given succinctly rather than explicitly?
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In this paper, we investigate this question when the succinct representation of X is chosen
as a sumset (or Minkowski sum) representation X = A + B := {a + b | a ∈ A, b ∈ B}.

Our motivation is threefold:

1. Complexity on structured input: How does the time complexity of the problem
change when we are supplied with structural information about the input? As a case
in point, this question has received considerable interest for the fundamental task of
sorting. Indeed, the well-known Sorting A + B problem studied by Fredman [20], and
originally posed by Berlekamp1, asks to determine whether we can compute, given A, B

with |A| = |B| = n, the sorted order of A + B in time o(n2 log n). Since the succinct
representation gives a large partial order essentially for free – simply presort A, B in time
O(n log n) –, this question essentially boils to whether or not a partial solution structure
helps significantly in determining the full output. The Sorting A + B problem has
several connections to problems in computational geometry such as polygon containment,
computing the Minkowski sum of orthogonal polygons and minimizing the Hausdorff
distance under translation for two segment sets, as described by the works of Barequet
and Har-Peled [6], and Barrera [7].
Another example that has received considerable attention is the Pareto Sum problem (see,
e.g., [27, 24]), which asks to compute the skyline of X = A + B (see Section 4 for a formal
definition). It is only natural to ask analogous questions for other numerical/geometric
problems. In particular, a succinct sumset representation reveals additive structure of
the problem, which may or may not simplify the algorithmic task considerably.

2. Algorithmic applications (sumset-compressed computational geometry): Let
T (N) denote the optimal running time for solving a problem of interest on an input set
of N points in Zd. For favorable inputs, it may be possible to find much smaller sets
A, B with X = A + B – in principle compressions to size O(

√
N) are possible. If we

were able to solve the problem of interest in time O(T (|A| + |B|)) rather than T (|X|)
(aka decompress-and-solve running time), we could obtain significantly faster algorithms
that reduce the running time from T (N) to O(T (

√
N)). In fact, even small asymptotic

improvements over T (N) might be algorithmically interesting.

3. k-SUM as precise barrier for succinct computations: Our setup offers another
perspective on the k-SUM problem. Specifically, for various problems, we shall prove that
refuting a corresponding k-SUM hypothesis is equivalent to solving the sumset-succinct
version of the problem faster than via decompress-and-solve. That is, despite its simple
definition (asking a very basic question about sumsets), the k-SUM problem captures
much more general primitives on succinct inputs. We believe that this yields valuable
insights into the true expressiveness of k-SUM and the plausibility of the corresponding
hardness hypothesis.

1.1 Our setup

For any algorithmic problem g defined on an input set X ⊆ Zd, we consider the following
sumset-succinct version as succinct-g:

1 In the literature, the name Sorting X + Y is more common. However, throughout our paper X will
denote the explicit input and A + B its succinct representation.
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Problem g

Input: X ⊆ Zd

possibly additional inputs z

Output: g(X, z)

Problem succinct-g

Input: A, B ⊆ Zd

possibly additional inputs z

Output: g(X, z) where X = A + B

As a convention, we set N := |X|, n := |A| and m := |B|. For ease of presentation,
we will generally assume that n = m, but our results can be adapted to the general case.
Throughout the paper, we will assume that all input numbers are chosen from a polynomial
range, i.e., X ⊆ {N c, . . . , N c}d for some arbitrarily large constant c.

Let us consider a few (near-)linear time solvable problems g. We observe that their
succinct versions may have very different time complexities:

A succintly easy problem: Selection

Consider the problem Selection: Given X ⊆ Z and 1 ≤ k ≤ N , return the k-th largest
element in X. Selection is well known to be solvable in time O(N); see [8, 15]. Its succinct
version succinct-Selection has received considerable attention as well [30, 29, 28, 19] and can
be solved significantly faster than decompress-and-solve, specifically, in time Õ(n).2

A succinctly hard problem: Skyline computation

Consider the problem of skyline computation (aka non-dominance filtering or Pareto front
computation), see, e.g. [32, 14, 22]: Given X ⊆ Zd, compute the set Z of non-dominated
points, i.e., all x ∈ X for which there is no x′ ∈ X with x′ ≠ x and x ≤ x′ component-wise.
This problem can be solved in near-linear time Õ(N), see, e.g., [32]. Its succinct version is
known as Pareto Sum and naturally occurs in several multi-objective optimization algorithms,
see Hespe et al. [27]. Notably, a conditional lower bound of N1−o(1) that holds when the
output size is Θ(

√
N) has been proven under the (min, +)-convolution hypothesis [21] and

the 3-SUM hypothesis [24]. We shall investigate this problem in much more detail below.

On reductions to k-SUM

The 3-SUM problem3 is one of the first problems used for conditional lower bounds. Initially
introduced to explain various quadratic-time barriers observed in computational geometry [23],
it has since been used to show quadratic-time hardness for a wealth of problems from various
fields [41, 35, 5, 34, 13]. Its generalization, the k-SUM problem4, has led to further conditional
lower bounds beyond quadratic-time solvable problems [18, 4, 1, 2]. For a more comprehensive
overview, we refer to the survey of Williams [43].

An important aspect of our investigations is that we establish fine-grained equival-
ences with k-SUM problems, which requires the somewhat unusual direction of reducing
certain problems to k-SUM. Conveniently, we may exploit for this task a recent com-
pleteness theorem [24]: This work introduces general classes of problems which can be
reduced to k-SUM, thereby simplifying the arguments needed to reduce sumset-related

2 The authors consider a slight variant in which A + B is viewed as a multiset (or |A + B| = |A| · |B|).
3 Given sets A, B, C do there exist a ∈ A, b ∈ B, c ∈ C s.t a + b + c = 0.
4 The k-SUM problem asks, given sets A1, . . . , Ak of n numbers, whether there exist a1 ∈ A1, . . . , ak ∈ Ak

such that
∑k

i=1 ai = 0. The k-SUM hypothesis states that for no ϵ > 0 there exists a O(n⌈k/2⌉−ϵ) time
algorithm that solves k-SUM.
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problems to k-SUM. Specifically, we shall need the existential fragment of the class FOPZ:
It consists of problems whose inputs are sets A1 ⊆ Zd1 , . . . , Ak ⊆ Zdk , and free variables
t1 . . . tℓ ∈ Z, and the task is to determine whether there exist a1 ∈ A1 . . . ak ∈ Ak such that
φ(a1[1], . . . , a1[d1], . . . , ak[1], . . . , ak[dk], t1 . . . , tℓ) holds, where φ is a fixed, but arbitrary lin-
ear arithmetic formula over the vector entries of a1 . . . ak and the free variables. (In particular,
the dimensions d1, . . . , dk are constant.) Each such problem is near-linear time reducible to
k-SUM. We will frequently argue in our reductions that subtasks can be expressed as an
existential FOPZ formula and exploit the completeness theorem.

Further related work

The authors in [9] explored connections of the X + Y sorting problem with the (min, +)-
convolution problem. Other works consider the fine-grained complexity of other notions of
succinct inputs, such as representing sequences succinctly as grammar-based compressions [2,
1], or succinctly defined graphs using the notion of factored graphs [25].

1.2 Our results
We investigate the succinct versions of many well-studied geometric primitives solvable in
near-linear time. While some turn out to be easy, many others can be tightly connected to
the k-SUM problem. In fact, we believe our results may serve as template to classify further
problems according to their succinct complexity.

Some succinctly easy problems

For context, we observe that there is a large number of non-trivial geometric primitives
(beyond selection) for which fast succinct computation is indeed possible.

As perhaps most prominent and well-known example, consider the convex hull problem:
Given A, B ⊆ Z2, compute the convex hull conv(X) of X = A + B. By a folklore identity,
conv(A + B) = conv(A) + conv(B), with complexity |conv(A)| + |conv(B)|. This yields
Õ(n)-time algorithms for succinctly computing convex hulls, see also [17]. This fact leads us
to the following general observation.

▶ Observation 1. If we can compute g(X) by a T (m)-time algorithm that receives as input
only the convex hull of X of size m, then succinct-g(X) can be solved in time Õ(T (n)).

While the observation is simple, it leads to an interesting class of problems which can be
solved in near-linear time in the size of the sumset compression. Some examples of problems
which can be efficiently solved using only the convex hull of the input are the diameter of
points, the maximum bounding box, the distance between two convex hulls and many more,
described by Shamos in [36]. All these problems can be solved with a known technique
originally introduced by Shamos [37, 36], which has subsequently been coined rotating calipers
and further explored by Toussaint [39].

On Closest vs. Furthest Pair

Consider the problem Closest L∞-Pair: Given X ⊆ Zd, determine minx1,x2∈X,x1 ̸=x2 ∥x1 −
x2∥∞. Its natural maximization analogue is Furthest L∞-Pair: Given X ⊆ Zd, determine
maxx1,x2∈X ∥x1 − x2∥∞. Both problems are solvable in near-linear time Õ(N) whenever d is
constant [22, 10].
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However, we observe that the succinct versions differ substantially in their time complexity:
Succinct-Furthest L∞-Pair can be solved in time Õ(n), while for succinct-Closest L∞-Pair
we obtain a 3-SUM-based lower bound of N1−o(1) already in 1D, using the fact that the
EqDist problem is 3-SUM-hard [6]; see the full version of the paper.

Naturally, we may also consider the bichromatic case of the Closest L∞-Pair problem:
Given X, Y ⊆ Zd, determine minx∈X,y∈Y ∥x − y∥∞. Here, the natural succinct version
receives sets A, B, C, D ⊆ Zd as inputs, and the task is to solve the problem for X = A + B

and Y = C + D. We prove that this succinct-Bichromatic L∞-Pair problem is fine-grained
equivalent to 4-SUM. The reduction to 4-SUM follows from observing that the decision problem
can be formulated as an existential FOPZ formula, which can be reduced to 4-SUM [24].
It remains an interesting question whether the monochromatic succinct Closest-L∞-Pair
is fine-grained equivalent to 3-SUM (our results place it between 3-SUM and 4-SUM). For
further fine-grained complexity results on Closest and Furthest Pair in higher dimensions;
see e.g., [42] and [31].

Multivariate 3-SUM

The remaining problems that we study will exhibit a tight connection to a multivariate
version of the 3-SUM problem. Specifically, we introduce the following problem:

▶ Definition 2 (All-ints 3-SUM(n, n, k)). Given sets A, B ⊆ Z of size n, and a set C ⊆ Z of
size k. Determine for each c in C if there exists (a, b) ∈ A × B with a + b = c.

It is easy to see that this problem can be solved in time Õ(min{kn, n2 + k}): The O(kn)
bound follows by solving, for each c ∈ C, the corresponding 2-SUM problem of detecting
a ∈ A, b ∈ B with a + b = c, which is well-known to be solvable in time O(n). The Õ(n2 + k)
upper bound follows from computing A+B explicitly, and solving the corresponding dictionary
problem for each c ∈ C. This time bound turns out to be conditionally tight; see Section 3:
For any k = Θ(nα) with 0 < α ≤ 1, we show using standard techniques that this problem
cannot be solved in time O((nk)1−ϵ) with ϵ > 0 unless the 3-SUM hypothesis is false. Note
that this establishes a conditionally tight answer for all k: If k = Θ(nα) with α > 1, then we
obtain a n2−o(1) conditional lower bound via padding, and a Ω(k) lower bound follows from
the input size of the problem.

Perhaps surprisingly, this problem naturally captures the precise fine-grained complexity
of various succinct geometric primitives. Note that when k = n, All-ints 3-SUM(n, n, k) is
well known to be subquadratic equivalent to 3-SUM [40], but a fine-grained equivalence for
k = Θ(nα) with α < 1 does not appear to follow from standard techniques. We will thus
make use of a slight generalization of the completeness theorem for existential FOPZ formulas,
which is implicit in [24]. Consider the following problems: Given A ⊆ Zd1 , B ⊆ Zd2 , C ⊆ Zd3

of sizes n, n and k, respectively, compute for each c ∈ C, whether there exist a ∈ A, b ∈ B

such that a linear arithmetic formula φ(a[1], . . . , a[d1], b[1], . . . , b[d2], c[1], . . . , c[d3]) over the
entries in the vectors a, b, c holds. For every linear arithmetic formula φ, we can reduce this
problem to Õ(1) instances of All-ints 3-SUM(n, n, k). A standalone proof of this fact can be
found in the full version of the paper.

Succint orthogonal range queries

Consider a batched (or offline) version of answering orthogonal range queries over X, which we
call Batched Orthogonal Range Searching: Given X ⊆ Zd and orthogonal ranges r1, . . . , rk,
determine for each j = 1, . . . , k whether X ∩ rj is empty. This problem can be solved in
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time Õ(N + k) for constant d, see, e.g. [12]. We observe that succinct-Batched Orthogonal
Range Searching is fine-grained equivalent to All-ints 3-SUM(n, n, k). To reduce from All-ints
3-SUM(n, n, k), use A, B as succinct input sets for a 1-dimensional instance of succinct-
Batched Orthogonal Range Searching and for C = {c1, . . . , ck} choose ri = [ci, ci]. The
other direction follows from observing that we may represent the succinct Orthogonal Range
Searching problem as a suitable All-ints-FOPZ formula. The details can be found in the full
version of the paper.

Succinct skyline (Pareto Sum)

Recall the prominent geometric problem of skyline computation (aka non-dominance filtering
or maxima of point sets computation), see, e.g. [32, 14, 22]: Given X ⊆ Zd, compute the
set Z of non-dominated points, i.e., all x ∈ X for which there is no x′ ∈ X with x′ ≠ x

and x ≤ x′ component-wise. This (explicit) problem can be solved in time O(N log k) [32],
where k = |Z| denotes the output size. For d = 2, Hespe et al. show how to compute its
succinct variant, the Pareto Sum, in time O(n log n + kn). We prove that computing all k

non-dominated points of X = A + B is fine-grained equivalent to All-ints 3-SUM(n, n, k).
Starting point of our reduction from All-ints 3-SUM(n, n, k) to the Pareto Sum is the

subquadratic reduction from 3-SUM to Pareto Sum given in [24], which uses Conv3-SUM as
an intermediate step. Notably, however, our multivariate setting poses a perhaps unexpected
challenge: The standard reductions from 3-SUM to Conv3-SUM [35, 11] do not readily
transfer to a multivariate setting. Instead, we introduce a variant of Conv3-SUM that we
call All-ints-MixedConv3-SUM(n, n, k)5:

▶ Definition 3 (All-ints-MixedConv3-SUM). Given sequences A[0], . . . , A[k−1] and B[0], . . . , B[k−
1], where each set A[i], B[j] is a set of O(n/k) integers, and a sequence of integers C[0], . . . , C[k−
1], determine for each 0 ≤ i < k whether there exists some j and elements a ∈ A[j], b ∈ B[i−j]
such that a + b = C[i].

This problem can easily be solved in time O(kn). We carefully adapt the reduction
from 3-SUM to convolution 3-SUM given in [11] to reduce All-ints 3-SUM(n, n, k) to All-
ints-MixedConv3-SUM(n, n, k). As a further technical challenge, our approach requires an
equivalence between the problem of computing the complete Pareto Sum and computing
the Pareto Sum inside a given query range. Specifically, in our lower bound, we need to
allow as query ranges quadrants of the form [x, ∞) × [y, ∞); with this choice, even for sets
A, B with a Pareto Sum as large as Ω(n2) one may still give a query range with arbitrary
small outputsize k, e.g., k = O(1). Interestingly, using an involved construction detailed in
Section 4.1, we show that this problem reduces to its specical case of computing the complete
Pareto set under the promise that its size is k + O(1). As a by-product, this also shows that
for any n ∈ N, there exist sets A, B of size n of incomparable vectors in Z2 with a Pareto
Sum of constant size, which does not appear to have been proven before. After showing
this equivalence, we reduce All-ints-MixedConv3-SUM to Pareto Sum, reminiscent of the
reduction from Convolution 3-SUM to Pareto Sum in [24].

The reverse reduction from Pareto Sum to All-ints 3-SUM(n, n, k) is also technically
interesting: while Hespe et al. [27] show how to compute each of the k output points
successively in Õ(n) time per point, unfortunately, we cannot follow this approach in our
reduction (calling an All-ints 3-SUM(n, n, k)-oracle Ω(k) times would trivially exceed Õ(kn)

5 The definition appears related in spirit (but different) to Factored 3-SUM defined in [16].
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running time). Instead, we aim to identify the k output points essentially simultaneously. To
this end, we perform a divide-and-conquer approach. We maintain a set of already identified
Pareto Sum points S, as well as a list of up to k active x-intervals – an interval is deemed
active if it contains at least one (unidentified) point of the Pareto Sum. At each level of the
recursion, we split all active intervals into two halves. The key observation is the following:
Given S and an arbitrary list of intervals I1, . . . , Is, we can compute for each Ij whether it
contains a point in the Pareto Sum (but not already in S) using only Õ(1) All-ints FOPZ
(n, n, s) queries, which in turn can be reduced to Õ(1) All-ints 3-SUM(n, n, k) instances.
After O(log n) levels of the recursion, each interval consists of at most a single integer, and
can be resolved fully. The details can be found in Section 4.

Succinct independent set in unit interval graphs

Consider the maximum independent set problem (MIS) in unit interval graphs: Given a set
of (open) unit intervals I in Z, compute a maximum independent set S∗, i.e., a pairwise
non-intersecting subset of intervals maximizing its size. A simple greedy algorithm is well
known to solve the problem in time O(n log n), see, e.g. [26]. Taking the output size k = |S∗|
into account, this can be slightly improved to time O(n log k), see [38].

For studying its connection with All-ints 3-SUM(n, n, k), the technical work spent for the
equivalence to Pareto Sum pays off: On the lower bound side, we establish a fine-grained
reduction from All-ints 3-SUM(n, n, k) to succinct-MIS in unit interval graphs using a similar
approach as for the Pareto Sum. In particular, we may reduce immediately from All-ints
MixedConv3-SUM(n, n, k), and transfer conceptually similar arguments to the MIS setting.

On the upper bound side, we are not quite able to establish the reverse reduction. However,
we show how to reduce computing a maximal independent set to All-ints 3-SUM(n, n, k),
again exploiting careful parallel binary searches in a divide-and-conquer approach. It remains
an interesting open problem to reduce the MIS problem in unit interval graphs to All-ints
3-SUM(n, n, k). The details can be found in the full version of the paper.

Summary

For the problems equivalent to All-ints 3-SUM(n, n, k), our results show that improving over
decompress-and-solve running time N1±o(1) is possible whenever the output size k is small
enough, specifically k = O(N1/2−ϵ) = O(n1−ϵ) for some ϵ > 0. We refer to Figure 1 for an
overview of the reductions shown. In the full version of the paper, we provide a table which
summarizes runtimes for various problems, when defined succinctly and explicitly.

2 Preliminaries

We make use of basic tools in fine-grained complexity, for a comprehensive overview; see the
survey [43]. For our purposes, the basic notion of fine-grained reduction is as follows. Consider
problems P1, P2, with presumed time complexities T1,T2, we say there is a fine-grained
reduction from P1 to P2 if for all ϵ > 0 there exists δ > 0 and an algorithm A solving P1 with
oracle access to P2 such that if all calls to P2 are replaced by an O(T2(n)1−ϵ)-time algorithm,
then A runs in time O(T1(n)1−δ). We say problems P1, P2 are fine-grained equivalent if
there exist fine-grained reductions from P1 to P2 and P2 to P1. Throughout the paper,
M will always denote a large number which we set as follows: With A, B, C ⊆ Zd, we let
M := 10 · max{∥a∥1 + ∥b∥1 + ∥c∥1 : a ∈ A, b ∈ B, c ∈ C}.
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3-SUM

4-SUM

Succinct Skyline

All-ints-MixedConv(n, n, k)
Orthgonal Range Search

Bi. L∞ closest pair

EqDist

Mono. L∞ closest pair

All-ints-3-SUM(n, n, k)

Succinct Batched

Succinct

Succinct

Succinct maximum
independent set in
unit interval graphs

Succinct maximal
independent set in
unit interval graphs

Succinct Q-Skyline

Figure 1 The above figure gives an overview of our most important results. The black arrows,
denote the reductions, we have shown. The single gray arrow (reduction) from 3-SUM to the
problem EqDist has been shown by Barequet and Har-Peled [6]. Furthermore, the violet arrow i.e
the equivalence between All-ints 3-SUM(n, n, k) and All-intsMixedConv(n, n, k), holds only for the
case, when k ∈ Θ(nα), where α ∈ (0, 1].

3 Multivariate 3-SUM variants

Let us recall two central problems for our results.

▶ Definition 4 (All-ints 3-SUM(n, n, k)). Given sets A, B of size n, and a set C of size k.
Determine for each c in C if there exists (a, b) ∈ A × B with a + b = c.

▶ Definition 5 (All-ints-MixedConv3-SUM(n, n, k)). Given sequences of sets A[0] . . . A[k − 1]
and B[0] . . . B[k − 1] of size O(n/k), and a sequence of integers C[0], . . . , C[k − 1], determine
for every C[i] if there exists an element a ∈ A[j] and an element b ∈ B[i − j] such that
a + b = C[i].

In order to show an equivalence between All-ints 3-SUM(n, n, k) and All-ints-MixedConv3-
SUM, we make use of a family of hash functions h : [U ] → [m] defined by h(x) := x mod p

over a uniform random prime p selected in [m/2, m). These hash functions satisfy the
following properties.

almost-linearity, that is h(x + y) = h(x) + h(y) or h(x + y) = h(x) + h(y) − p.
O(log(U))-universality, that is Prh∈H[h(x) = h(y)] = O( log(U)

m ).

Throughout, we assume that A, B, C ⊆ [U ] with U = O(n3) which can be achieved using
a standard universe reduction. Furthermore, the above hash functions exhibit the following
additional property.

▶ Lemma 6 (Overfull buckets [11]). Let H be a family of d-universal hash functions [U ] → [m].
Furthermore, let h ∈ H be chosen randomly. Let S be a set of n integers in [U ]. We call
x bad iff the number of elements equal to h(x) (excluding x) exceeds a parameter t. The
expected number of bad elements x in S is at most dn

m · 1
t · n.

We adapt the approach of Chan and He [11] (originally used to show a deterministic
reduction from Convolution 3-SUM to 3-SUM) to show the following.
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▶ Lemma 7. Let k = Θ(nα), where α ∈ (0, 1]. If we can solve All-ints-MixedConv3-SUM
in time O((nk)1−ϵ) for some ϵ > 0, then we can solve All-ints 3-SUM(n, n, k) in time
O((nk)1−ϵ′) for some ϵ′ > 0.

Proof. We reduce from All-ints 3-SUM(n, n, k). Let p be a prime number chosen from
[m/2, m) where m = dk

R with d = O(log(U)) = O(log(n)) and R to be chosen later.
Let h(x) := x mod p and C ′[i] := {c ∈ C : h(c) = i}, A′[i] := {a ∈ A : h(a) = i},
B′[i] := {b ∈ B : h(b) = i}. We call elements in c ∈ C bad if |C ′[i]| > t where i = h(c).
Furthermore, we call elements a ∈ A bad if |A′[i]| > t · n/m where i = h(a). Similarly, we
call elements b ∈ B bad if |B′[i]| > t · n/m where i = h(b).

The expected number of bad elements in C is O
(

dk
dk
R

· 1
t

)
· k = O

(
Rk
t

)
. The expected

number of bad elements in A and B is O
(

dn
m · 1

n
m ·t · n

)
= O

(
nd
t

)
.

By making use of Markov’s inequality for the sets A, B, C separately, the probability
that the number of bad A, B and C elements exceed 4 times its expectation is at most 1/4
each. Thus by applying the union bound, there exists a hash function h, represented by some
suitable prime p, where the number of bad elements for each set A, B, C is bounded by at
most 4 times the number of expected bad elements.

We find such a hash function by going naively through all O(m/ log(m)) primes p ∈
[m/2, m). The primes can be generated in time Õ(m) by the sieve of Eratosthenes, and
computing the bucket sizes takes time O(m/ log(m)) · O(n) = Õ( dkn

R ).
We proceed now as follows: For the bad elements in C, we perform a bruteforce 2-SUM

algorithm, which needs time O(n). There are at most O( Rk
t ) many bad elements, thus this

takes time O( Rkn
t ).

For the bad elements in A and B, we also perform a simple bruteforce algorithm, which
needs time O(k), resulting in a runtime O(k · nd

t ) = Õ( nk
t ).

For the remaining good elements in C, which occur at most t times, we proceed as follows:
For each possible candidate in [t], we perform an All-ints-MixedConv3-SUM instance for both
cases of the almost-additiveness. For this, we get a runtime of Õ(t · (n · k

R )1−ϵ). Concluding,
we get a total runtime of

Õ

(
kn

R

)
+ O

(
Rkn

t

)
+ Õ

(
nk

t

)
+ Õ

(
t · (n · k

R
)1−ϵ

)
.

By setting t = R2, we equate the first two terms, reducing to a runtime of:

Õ

(
kn

R

)
+ Õ

(
nk

R2

)
+ Õ

(
R2 ·

(
n · k

R

)1−ϵ
)

,

which is bounded by Õ
(

kn
R

)
+ Õ

(
R1+ϵ · (n · k)1−ϵ

)
. We balance the expression by setting

R = (nk)ϵ/(2+ϵ), resulting in the final runtime Õ((nk)1−ϵ′), for an ϵ′ > 0. We remove
the polylog factors by choosing an ϵ∗ such that 0 < ϵ∗ < ϵ

′ , and get the desired runtime
O((nk)1−ϵ∗) . ◀

The reverse reduction is simpler and follows the standard reduction from convolution 3-SUM
to 3-SUM.

▶ Lemma 8. Let k = Θ(nα), where α ∈ (0, 1]. If All-ints 3-SUM(n, n, k) can be solved in
time T (n, k), then we can solve All-ints MixedConv3-SUM(n, n, k) in time O(T (n, k)).
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Proof. We first convert the All-intsMixed-Conv3-SUM (n, n, k) problem into an All-ints
3-SUM (n, n, k) problem. Consider the newly created sets A′, B′, C ′, and a large number M

as follows:

A′ := {a + iM : i ∈ {0, . . . , k − 1} ∧ a ∈ A[i]}
B′ := {b + iM : i ∈ {0, . . . , k − 1} ∧ b ∈ B[i]}
C ′ := {c[i] + iM : i ∈ {0, . . . , k − 1}}

Due to the large choice of M it holds that there exist a′ ∈ A′, b′ ∈ B′, c′ ∈ C ′ such that
a′ + b′ = c′ iff there exists i, j, k ∈ {0, . . . , k − 1} such that i + j = k and there exists
a ∈ A[i], b ∈ B[j] such that a + b = C[k].

◀

▶ Lemma 9 (All-ints FOPZ queries [24]). Let A1 ⊆ Zd1 , A2 ⊆ Zd2 , A3 ⊆ Zd3 , with |A1| =
k, |A2| = |A3| = n, and φ(a1, a2, a3) be a quantifier free linear arithmetic formula. If we
can solve All-ints 3-SUM(n, n, k) in time T (n, k), then we can determine for each a1 ∈ A1,
whether there exist a2 ∈ A2, a3 ∈ A3 such that φ(a1, a2, a3) is satisfied in time Õ(T (n, k)).

The details can be found in the full version of the paper. We conclude with a simple 3-SUM
lower bound for All-ints 3-SUM(n, n, k).

▶ Lemma 10. Let k = Θ(nα) for α ∈ (0, 1]. If we can solve All-ints 3-SUM (n, n, k) in time
O((nk)1−ϵ) for some ϵ > 0, then the 3-SUM hypothesis fails.

Proof. We reduce from 3-SUM and separate the set C into O(n/k) sets of size O(k). We
perform then O(n/k) instances of All-ints 3-SUM(n, n, k) that run in time O(n/nα) · O((n ·
nα)1−ϵ) = O(n2−ϵ′) for some ϵ′ > 0. ◀

4 Output sensitive Skyline

We recall the two variants of the Pareto Sum problem.

▶ Definition 11 (Succinct Skyline/Pareto Sum). Given a succinctly defined set X = A + B ⊆
Z2, the skyline (aka Pareto front) of X consists of all non-dominated vectors in X. More
formally compute the following set: PS(A, B) := {x ∈ X : There is no x′ ∈ X \{x} : x ≤ x′},

where we denote the output size by k := |PS(A, B)|.

▶ Definition 12 (Q-Succinct Skyline/Q-Pareto Sum). Given a succinctly defined set X =
A + B ⊆ Z2, and a quadrant Q = [α1, ∞) × [α2, ∞) the skyline (aka Pareto front) of X

consists of all non-dominated vectors in X inside Q. More formally compute the following
set: PSQ(A, B) := {x ∈ X = A + B : x ∈ Q and there is no x′ ∈ X \ {x} : x ≤ x′}, where
again we denote the output size by k := |PSQ(A, B)|.

In the following section, we show that the above problems are fine-grained equivalent, which
will be necessary to show the fine-grained equivalence between the Pareto Sum problem and
All-ints 3-SUM(n, n, k).

4.1 On the equivalence of succinct skyline and Q−succinct skyline
▶ Theorem 13. If we can compute the Pareto Sum in time T (n, k), then the Q-Pareto
Sum of an instance A, B, Q with |A| = |B| = n and output size k can be computed in time
O(T (n, k)).
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Proof. Assume the quadrant to be given in the form Q = [L.x, ∞) × [L.y, ∞). The goal is
to construct a Pareto Sum instance where only Pareto points c ∈ A + B with c[0] ≥ L.x and
c[1] ≥ L.y are part of the output. The reduction consists of the following steps:

Step 1: Transform the point coordinates in A, B such that the minimum coordinate
value is at least 1 and adapt L.x and L.y accordingly. Define M larger than the
largest possible point coordinate in A + B and set A′ := A ∪ A+ and B′ = B ∪ B+

where A+ = {(−5M +L.x, 7M), (−3M +L.x, 5M), (9M, −7M), (11M, −9M)} and B+ =
{(−5M, 7M), (−M, 3M), (3M, −M)}.
Step 2: Transform the point coordinates in A′ and B′ such that the minimum coordinate
values are again at least 1 and adjust L.y accordingly. Let M ′ be larger than the new
maximum coordinate of any point in A′ + B′. Augment A′ with points A++ and B′ with
points B++, which are derived from A+, B+ by swapping their x- and y-coordinates,
respectively, and replacing M by M ′ and L.x by (the transformed) L.y.
Step 3: Compute the Pareto Sum C ′ of A′, B′.
Step 4: Delete all points with coordinates smaller than 1 or larger than M ′ from C ′,
transform the coordinates of the remaining points in C ′ by reversing the transformations
applied in Step 4, delete again elements with coordinate values smaller than 1 or larger
than M and finally transform the coordinates once more by reversing the transformation
applied in Step 2.

Applying the steps 1 and 2 takes time O(n) each. Step 3 takes time T (max{|A′|, |B′|}, |C ′|)
with max{|A′|, |B′|} = n+8. Step 4 takes time in O(|C ′|). Below, we argue that the returned
result is correct and that |C ′| ∈ O(k).

After the coordinate transformation in Step 1, the elements in A and B have coordinates
in {1, . . . , M − 1}. Figure 2 illustrates the impact of adding A+ and B+ to A and B,
respectively. Firstly, we observe that all elements c = a + b with a ∈ A+ or b ∈ B+ – except
for A+

2 + B+
3 – have either c[0] < M or c[1] < M . Accordingly, none of these elements can

dominate any element in A + B as their maximum coordinate is bounded by M . The point
A+

2 + B+
3 = (L, 4M), however, dominates all points in A + B with an x-coordinate of at

most L.x. These points are all outside of Q based on our definition of L.x. Next, we observe
that only 12 points c = a + b with a /∈ A or b /∈ B are non-dominated, see again Figure 2.
For cells having a colored point in Figure 2 we argue in the following that they dominate the
corresponding colored ranges by comparing the x- and y-coordinates of the dominating point
to the x- and y-coordinates of the dominated range.

A+
1 + B+

3 = (−2M + L, 6M) dominates A+
2 + B (yellow) since −2M + L > −3M + L + 1

and −2M +L > −2M +L−1 for the x-coordinates and for the y-coordinates 6M > 6M −1
and 6M > 5M + 1.
A+

2 + B+
2 = (−4M + L, 8M) dominates two ranges, namely A+

1 + B and A + B+
1 (orange).

The former is dominated since −4M + L > −5M + L − 1 and −4M + L > −4M + L − 1
hold for the x-coordinates and 8M > 8M − 1 and 8M > 7M + 1 for the y-coordinates.
For the latter range we conclude that −4M + L > −5M + 1 and −4M + L > −4M − 1
for the x-coordinates and 8M > 8M − 1 and 8M > 7M + 1 for the y-coordinates.
A+

2 + B+
3 = (L, 4M) dominates A + B+

2 (purple) since L > −M + 1 and L > −1 for the
x-coordinates and 4M > 4M − 1 and 4M > 3M + 1 for the y-coordinates.
A+

3 +B+
1 = (4M, 0) dominates A+B+

3 (light green) since 4M > 3M +1 and 4M > 4M −1
for the x-coordinates and 0 > −1 and 0 > −M + 1 for the y-coordinates.
A+

3 + B+
3 = (12M, −8M) dominates A+

4 + B (turquoise) since 12M > 11M + 1 and
12M > 12M − 1 for the x-coordinates and −8M > −8M − 1 and −8M > −9M + 1 for
the y-coordinates.
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A+
3A+

1 A+
2 A A+

4

B+
1

B

B+
2

B+
3

11M,−9M9M,−7M−3M + L, 5M−5M + L, 7M

3M,−M

−M, 3M

−5M, 7M

1,M − 1 M − 1, 1

1,M − 1

M − 1, 1

−10M + L, 14M −8M + L, 12M −5M + 1, 8M − 1 −4M − 1, 7M + 1 4M, 0 6M,−2M

−6M + L, 10M −4M + L, 8M −M + 1, 4M − 1 −1, 3M + 1 8M,−4M 10M,−6M

−5M +L+1,
8M − 1

−3M +L+1,
6M − 1

−4M +L− 1,
7M + 1

−2M +L− 1,
5M + 1

−2M + L, 6M L, 4M 3M + 1,−1 4M − 1,−M + 1 12M,−8M 14M,−10M

10M − 1,
−7M + 1

12M − 1,
−9M + 1

9M + 1,
−6M − 1

11M + 1,
−8M − 1

Figure 2 Q-Pareto Sum instance augmented with A+, B+. The colored regions are dominated
by the element in the cell with the dot of matching color. L refers to L.x. By definition, we have
L ≤ M .

A+
4 + B+

2 = (10M, −6M) dominates A+
3 + B (dark green) since 10M > 9M + 1 and

10M > 10M − 1 for the x-coordinates and −6M > −6M − 1 and −6M > −7M + 1 for
the y-coordinates.

Step 2 repeats the very same process of coordinate transformation and augmentation,
now with the goal to introduce a filter for the points with a y-coordinate smaller than
L.y. The arguments from above apply again. Therefore, computing the Pareto Sum
on A′, B′ in Step 3 results in C ′ of size at most k + 24. Thus, the filtering and back
transformation in Step 4 takes time in O(k). Summing up over all steps, the running time is
in O(n + k + T (n, k)) = O(T (n, k)).

After completing Step 4, C ′ is guaranteed to contain all points of the Q-Pareto Sum C of
A, B that are strictly inside Q, as the points with an x-coordinate of at most L.x and a y-
coordinate of at most L.y are dominated by the newly introduced elements in the augmented
sumset, and Pareto points that result from the augmentation steps are filtered. ◀

We remark that the reduction in the other direction is trivial. Given an instance A, B

of Pareto Sum, we can construct an instance of Q-Pareto Sum with the same solution by
enclosing all points in A+B inside a large quadrant i.e Q = [−M, ∞)×[−M, ∞). Accordingly,
these two problems are fine-grained equivalent.

Moreover, our reduction technique can be leveraged to show that there are arbitrarily
large Pareto Sum instances, where A and B consist of incomparable vectors, for which the
output size k is constant. In prior work, it was only shown that for an instance with |A| = 2
and |B| = 5 an output size k = 4 < max(|A|, |B|) is possible [33]. But the question whether
there exist sets A, B with |A|, |B| = n and a Pareto Sum of size k ∈ o(n) has been open.
Given any Pareto Sum instance, we can define L.x as the maximum x coordinate of any
Pareto point in A + B. Using the augmentation described in Step 2 in the proof of Theorem
13, all Pareto points of A + B will be dominated and only 12 new Pareto points will be
introduced. Thus, we get the following corollary.
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▶ Corollary 14. For any n ∈ N, there exist sets A, B of incomparable vectors with |A| =
|B| = n and output size of the Pareto Sum k ∈ O(1).

4.2 A lower bound from All-ints 3-SUM(n, n, k)
▶ Lemma 15. If we can compute the output-sensitive Q-Pareto Sum of size k = Θ(nα)
for α ∈ (0, 1] for sets A, B in time O(T (n, k)), then we can solve All-ints MixedConv3-
SUM(n, n, k) in time O(T (n, k)).

Proof. Consider an All-ints MixedConv3-SUM(n, n, k) instance given by array of sets
A[0, . . . , k − 1], B[0, . . . , k − 1] of size O(n/k), and the array C[0, . . . , k − 1]. Let A′ :=
{a + 100iM : i ∈ {0, . . . , k − 1} ∧ a ∈ A[i]}, B′ := {b + 100iM : i ∈ {0, . . . , k − 1} ∧ b ∈ B[i]}
C ′ := {C[i]+100iM : i ∈ {0, . . . , k−1}}. It is clear that the newly constructed sets A′, B′ are
of size at most n and the set C ′ of size at most k. Let t := 2M , and by the above construction,
it holds that for an index i ∈ {0, . . . , k − 1} there does not exist a j ∈ {0, . . . , k − 1}, where
j ≤ i and a ∈ A[j], b ∈ B[i−j] such that a+b = C[i] if and only if for all a′ ∈ A′, b′ ∈ B′ there
exists c′ ∈ C ′, where one of the following two inequalities holds: c′ + 1 ≤ a′ + b′ ≤ c′ + 1 + t or
c′ − t − 1 ≤ a′ + b′ ≤ c′ − 1. Let us create the following set of the left side of the inequalities
observed, that is C̃ :=

⋃
c∈C′{c′ + 1, c′ − t − 1}.

We will construct the following sets in Z2, in order to integrate both above inequalities in
a Pareto Sum problem.

A∗ :=
{(

a

−a

)
: a ∈ A′

}
, B∗ :=

{(
b

−b

)
: b ∈ B′

}
, C∗ :=

{(
c + t

−c

)
: c ∈ C̃

}
We perform an output sensitive Q-Pareto Sum computation on the following sets, with a

quadrant Q, which we determine in a bit.

H = A∗ ∪
(

C∗ +
{(

1000kM

−1000kM

)})
, G = B∗ ∪

{(
−1000kM

1000kM

)}
The sumset H + G then consists of the following sumsets:

A∗ + B∗, A∗ +
{(

−1000kM

1000kM

)}
, C∗ + B∗ +

{(
1000kM

−1000kM

)}
, C∗.

We set the quadrant Q = [minc∈C∗ c[0], ∞) × [minc∈C∗ c[1], ∞), thus forcing the output-
sensitive Q-Pareto Sum to ignore everything besides the points in A∗ + B∗ and C∗.

Let us first argue that the points in C∗ need to be part of the output-sensitive sky-
line. We argue based on the indices i ∈ {0, . . . , k − 1}, which separate the points in
A∗ + B∗ and C∗ into clusters of points. For each i, j ∈ {0, . . . , k − 1} the points in

A∗ + B∗ are of the form
(

a + 100iM + b + 100jM

−a − b − 100iM − 100jM

)
=
(

(a + b) + (i + j)100M

−(a + b + (i + j)100M)

)
.

For each i ∈ {0, . . . , k − 1} the two points originally induced by index i, now in C∗

are of the form c̃1
i :=

(
c[i] + 100iM + 1 + t

−(c[i] + 100iM + 1)

)
, c̃2

i :=
(

c[i] + 100iM − t − 1 + t

−(c[i] + 100iM − t − 1)

)
=(

c[i] + 100iM − 1
−(c[i] + 100iM − t − 1)

)
. For each i ∈ {0, . . . , k − 1}, we now observe the points which

are included in the Pareto Sum. Clearly, the Pareto front, will contain c̃1
i as it is the point

with the largest x-coordinate among the points landing at the cluster of points induced

by index i. Furthermore, the point c̃2
i =

(
c[i] + 100iM − 1

−(c[i] + 100iM − t − 1)

)
is contained in the

Pareto Sum as it is the point with the highest y-coordinate among the points landing at the
cluster of points induced by index i. Let us prove the following claim.
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▷ Claim 16. The Pareto front of the cluster of points induced by index i will contain
precisely the points {c̃1

i , c̃2
i } if and only if there is no j ∈ {0, . . . , k − 1} such that there exists

an a ∈ A[j] and b ∈ B[i − j] with a + b = C[i].

Proof. As argued before the points {c̃1
i , c̃2

i }, will always be in the Pareto Sum induced by
index i. Assume there exists an index j such that there exists an a ∈ A[j] and b ∈ B[i − j]
such that a + b = C[i], then in the sumset A∗ + B∗ there will be a point γi of the form:

γi =
(

a + 100jM + b + 100(i − j)M
−(a + 100jM + b + 100(i − j)M)

)
=
(

c[i] + 100iM

−(c[i] + 100iM)

)
.

The point c̃1
i =

(
c[i] + 100iM + 1 + t

−(c[i] + 100iM + 1)

)
does not dominate γi because of the y-coordinate.

Furthermore, the point c̃2
i =

(
c[i] + 100iM − 1

−(c[i] + 100iM − t − 1)

)
does not dominate γi because

of the x-coordinate. Lastly, it is easy to see that the only points not dominated by c̃1
i or

c̃2
i in the cluster of points induced by index i need to be of the form γi. Concluding, the

Pareto front of the cluster of points induced by index i will contain precisely the points
{c̃1

i , c̃2
i , γi} if and only if there exists a j ∈ {0, . . . , k − 1} and a ∈ A[j] and b ∈ B[i − j] with

a + b = C[i]. ◀

After having proven the claim, it remains to scan through the Pareto Sum and identify
whether the Pareto front induced by each index i consists of two points, concluding the
reduction from All-ints MixedConv3-SUM(n, n, k). Lastly, notice that the size of the Pareto
front evaluated is at most O(k). ◀

By a simple padding argument we can now show the following lower bound.

▶ Lemma 17. Let ϵ > 0. There is no output-sensitive algorithm to compute the Pareto Sum
of sets A, B of size n in time O(n2−ϵ) with guaranteed output size Θ(nα), where 1 ≤ α < 2
and k := nα, unless All-ints 3-SUM(n, n, k) can be solved in time O(n2−ϵ′) for an ϵ′ > 0.

Proof. Case α ≤ 1 is shown in Lemma 15, by making use of the fine-grained equivalence
between All-ints 3-SUM(n, n, k) and All-ints-MixedConv-3-SUM(n, n, k).

We reduce from the case α = 1, let β = α − 1. We construct an artificial blowup of the
Pareto Sum output set of size nβ . To this end, take a subset of B′ of size nβ from the set B.
Let the vectors in B′ be numbered arbitrarily b1, . . . , bm. Construct the following set:

B̄ := B ∪
m⋃

i=1

{
bi +

(
i · M

−i · M

)}
︸ ︷︷ ︸

:=B̃

.

The Pareto Sum C will now consist of the original Pareto Sum of size n combined, with A+B̃

of size n1+β . This holds due to the fact that all vectors in A + B̃ are incomparable to each
other, and incomparable to the vectors A + B, due to the shift chosen for each vector. ◀

Let us now make use of the 3-SUM hardness of All-ints 3-SUM(n, n, k) to show the following
lower bound, by a simple combination of Lemma 15 and Lemma 17.

▶ Theorem 18. Let k = Θ(nα), where α ∈ (0, 2). There is no algorithm to solve output
sensitive Pareto Sum of output size k, in time O(min{n2, nk}1−ϵ) for an ϵ > 0, unless the
3-SUM hypothesis fails.
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Proof. We perform a simple case distinction depending on α, if 0 < α ≤ 1 we apply Lemma
15 together with the fine-grained equivalence between All-ints 3-SUM(n, n, k) and All-ints
MixedConv-3-SUM(n, n, k). In the case of 1 < α < 2, we similarly apply Lemma 17 together
with the fact that All-ints 3-SUM(n, n, k) is 3-SUM hard. ◀

4.3 A reduction to All-ints 3-SUM(n, n, k)
▶ Lemma 19. Given sets A, B ⊆ Z2 of size n and closed intervals I1 = [α1, ω1], . . . , Ik =
[αk, ωk]. We can compute for all intervals Ij the highest point in A + B with x-coordinate in
Ij in time Õ(T (n, k)) if All-ints 3-SUM(n, n, k) can be solved in time T (n, k).

Proof. We consider a parallel binary search approach. Let γ1, . . . , γk, ∈ [−M, M ] and
C := {(αi, ωi, γi) : i ∈ {1, . . . , k}}. An application of All-intsFOPZ query to the set C on the
formula

∃a ∈ A∃b ∈ B∃c ∈ C : c[0] ≤ a[0] + b[0] ∧ a[0] + b[0] ≤ c[1] ∧ a[1] + b[1] ≥ c[2],

gives us an answer for each interval Ij , where j ∈ {1, . . . , k}, whether there exist points
a ∈ A, b ∈ B such that the x-coordinate of a + b lies on the interval Ij and the y-coordinate
of a + b is higher than γj . By appropriately changing the value of γj , for each interval and
constructing a new formula in a logarithmic number of steps, we can find the height y∗

j of
the highest point in each interval Ij via a parallel binary search.

We now continue computing the x-coordinate of the highest point for each interval, which
we can also compute by a binary search. Consider δ1, . . . , δk, where δi = ⌊(ωi + αi)/2⌋ and
construct the following set C ′ = {(αi, ωi, δi, y∗

i ) : i ∈ {1, . . . , k}}. An application of All-ints
FOPZ query to the set C ′ of the formula

∃a ∈ A∃b ∈ B∃c′ ∈ C ′ : c[0] ≤ a[0]+b[0]∧a[0]+b[0] ≤ c[1]∧a[0]+b[0] ≥ c[2]∧a[1]+b[1] = c[3]

gives us an answer for each Interval Ij , whether there exists a ∈ A, b ∈ B such that the
x-coordinate of a + b lies on or to the right of δj and the y-coordinate of a + b is precisely
the y-coordinate of the highest point in the interval Ij .

Thus, by appropriately changing the value of δi for each interval and constructing a new
formula, in a logarithmic number of steps, we can find a corresponding x-coordinate to the
highest y-coordinate in each interval via a parallel binary search. Notice that we can choose
to binary search in such a way as to find for each interval the rightmost point, which equals
the highest y-coordinate. Lastly, we can also deduce if there is no point a + b inside an
interval at all.

For the runtime notice that a parallel binary search on an All-ints FOPZ query runs in
time Õ(T (n, k)) · O(log U) = Õ(T (n, k)) by Lemma 9, where U ∈ O(poly(n)) denotes the
size of the universe. ◀

▶ Theorem 20. If we can solve All-ints 3-SUM(n, n, k) in time T (n, k), then we can compute
an output sensitive Pareto Sum in time Õ(T (n, k)).

Proof. We perform a divide and conquer approach, where we keep a collection of disjoint
intervals I, with the invariant that every interval I ∈ I contains at least one point the Pareto
front of A + B whose x-coordinate lies in I. Furthermore, keep a set S which stores the
points of the skyline of A + B.

Start with the set of intervals given by one interval concluding the x-coordinate of all
points, I := {I1 = [−M, M ]}. We now state the general procedure.
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Firstly, compute the highest points inside all intervals in I by an application of Lemma
19. In the beginning we directly, store this point in the set S as it must be part of the Pareto
front of A + B.

Now, for each interval Ij = [α, ω] in I, we create two intervals I
(1)
j := [α, m − 1] and

I
(2)
j := [m, ω], where m = ⌊(α + ω)/2⌋ is the middle x-coordinate of the interval Ij . Perform

a call on Lemma 19 with A, B and the set of intervals I ′ := {I
(1)
1 , I

(2)
1 . . . , I

(1)
l , I

(2)
l }, to

compute the highest points of the non-empty intervals. In the case of several highest points in
an interval, Lemma 19 computes the rightmost highest point. We can now deduce for each of
the intervals in I ′ if it contains at least one point in the Pareto front of A + B. Clearly if the
interval is empty, we can disregard it and keep the non-empty half. Assume for Ij , we have
that I

(1)
j and I

(2)
j are both non-empty, with the highest points being s1 and s2 respectively.

If s2 dominates the point s1, we can disregard the interval I
(1)
j , as it can not be part of the

Pareto front of A + B, any further subdivision of I
(1)
j would create only more dominated

points by monotonicity. Otherwise, we know s1[0] < s2[0] and s1[1] > s2[1]. Let d1 and d2,
be the rightmost highest points of the intervals [m, M ] and [ω + 1, M ] respectively, which
can be computed by a call to Lemma 19 for all non-empty intervals I

(1)
1 , I

(2)
1 . . . , I

(1)
l , I

(2)
l .

We will keep the interval I
(1)
j (store s1 in S) iff d1 does not dominate s1, and will keep the

interval I
(2)
j (and store s2 in S) iff the point d2 does not dominate s2. Continue recursively,

with the set of non-disregarded intervals I ′, and the stored Pareto front points S, where we
terminate the recursion and return the set S when all intervals in I are of length 1.

For the correctness, we remark that the invariant holds that every interval in I holds at
least one point in the Pareto front. For the runtime, notice that the length of the intervals is
halved in every recursion step. Finally, we have a recursion depth of at most log2 U , where
U ∈ O(poly(n)) denotes the size of the universe, and in each recursion, we perform a call to
Lemma 19 with at most 4k intervals (including the computation of d1 and d2). Thus, we get
a final runtime of Õ(T (n, k)). ◀

5 Conclusion

We conclude with some open questions. It appears difficult to reduce All-ints 3-SUM(n, n, k)
to 3-SUM when k ≪ n, which would lead to a fine-grained equivalence between the problems.
A first step might be to investigate if All-ints 3-SUM(n, n, k) admits an efficient self-reduction.
Furthermore, it remains to classify further problems into being succinctly-easy or succinctly-
equivalent to variants of k-SUM. Finally, it is interesting to study good representations of
arbitrary sets X as sumsets A + B. In recent work [3], it was shown that determining perfect
representability is NP-hard. However, perhaps we can efficiently compute approximate
representations of sumsets, which may even lead to efficient (approximation) algorithms for
explicit versions of various geometric primitives.
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