
Completeness Theorems for k-SUM and Geometric Friends:

Deciding fragments of Linear Integer Arithmetic

Geri Gokaj1, Marvin Künnemann1

1Karlsruhe Institute of Technology

Abstract

In the last three decades, the k-SUM hypothesis has emerged as a satisfying explanation of
long-standing time barriers for a variety of algorithmic problems. Yet to this day, the literature
knows of only few proven consequences of a refutation of this hypothesis. Taking a descriptive
complexity viewpoint, we ask: What is the largest logically defined class of problems captured
by the k-SUM problem?

To this end, we introduce a class FOPZ of problems corresponding to deciding sentences in
Presburger arithmetic/linear integer arithmetic over finite subsets of integers. We establish two
large fragments for which the k-SUM problem is complete under fine-grained reductions:

1. The k-SUM problem is complete for deciding the sentences with k existential quantifiers.

2. The 3-SUM problem is complete for all 3-quantifier sentences of FOPZ expressible using
at most 3 linear inequalities.

Specifically, a faster-than-n⌈k/2⌉±o(1) algorithm for k-SUM (or faster-than-n2±o(1) algorithm for
3-SUM, respectively) directly translate to polynomial speedups of a general algorithm for all
sentences in the respective fragment.

Observing a barrier for proving completeness of 3-SUM for the entire class FOPZ, we turn to
the question which other – seemingly more general – problems are complete for FOPZ. In this
direction, we establish FOPZ-completeness of the problem pair of Pareto Sum Verification and
Hausdorff Distance under n Translations under the L∞/L1 norm in Zd. In particular, our results
invite to investigate Pareto Sum Verification as a high-dimensional generalization of 3-SUM.

1 Introduction

Consider a basic question in complexity theory: How can we determine for which problems an
essentially quadratic-time algorithm is best possible? If a given problem A admits an algorithm
running in n2+o(1) time, and it is known that A cannot be solved in time O(n2−ϵ) for any ϵ > 0,
then clearly the n2+o(1) algorithm has optimal runtime, up to subpolynomial factors. This question
can be asked more generally for any k ≥ 1 and time nk±o(1). To this day, the theoretical computer
science community is far from able to resolve this question unconditionally. However, a surge of
results over recent years uses conditional lower bounds based on plausible hardness assumptions to
shed some light on why some problems seemingly cannot be solved in time O(nk−ϵ) for any ϵ > 0.
Most notably, reductions from k-OV, k-SUM and the weighted k-clique problem have been used
to establish nk−o(1)-time conditional lower bounds, often matching known algorithms; see [60] for
a detailed survey.

In this context, the 3-SUM hypothesis is arguably the first – and particularly central – hardness
assumption for conditional lower bounds. Initially introduced to explain various quadratic-time

1

barriers observed in computational geometry [44], it has since been used to show quadratic-time
hardness for a wealth of problems from various fields [62, 56, 6, 49, 37, 3, 28]. Its generalization,
the k-SUM1 hypothesis, has led to further conditional lower bounds beyond the quadratic-time
regime [39, 4, 1, 2, 51]. For a more comprehensive overview, we refer to [60].

The centrality of the 3-SUM hypothesis for understanding quadratic-time barriers begs an
interesting question: Does 3-SUM fully capture quadratic-time solvability, in the sense that it
is hard for the entire class DTIME(n2)? Alas, Bloch, Buss, and Goldsmith [14] give evidence
that we are unlikely to prove this: If 3-SUM is hard for DTIME(n2) under quasilinear reductions,
then P ̸= NP. Thus, to understand precisely the role of 3-SUM to understand quadratic-time
computation, the more reasonable question to ask is:

What is the largest class C of problems such that 3-SUM is C-hard?2

Finding a large class C for which 3-SUM is hard may be seen as giving evidence for the 3-
SUM hypothesis. Furthermore, such a result may clarify the true expressive power of the 3-SUM
hypothesis, much like the NP-completeness of 3-SAT highlights its central role for polynomial
intractability.

1.1 Our approach

We approach our central question from a descriptive complexity perspective. This line of research
has been initiated by Gao et al. [45], who establish the sparse OV problem as complete for the
class of model checking first-order properties. One can interpret this result as showing that the OV
problem expresses relational database queries in the sense that a truly subquadratic algorithm for
OV would improve the fine-grained data complexity of such queries (see [45] for details). Related
works further delineate the fine-grained hardness of model checking first-order properties and related
problem classes [59, 18, 16, 11, 17, 41], see Section 1.3 for more discussion.

Towards continuing the line of research on fine-grained completeness theorems, we introduce a
class of problems corresponding to deciding formulas in linear integer arithmetic over finite sets of
integers. Specifically, consider the vectors

x1 = (x1[1], . . . , x1[d1]), . . . , xk = (xk[1], . . . , xk[dk])

as quantified variables, and let t1, . . . , tl be free variables. Moreover, let

X := {x1[1], . . . , x1[d1], . . . xk[1], . . . , xk[dk], t1, . . . , tl},

and let ψ be a quantifier-free linear arithmetic formula over variables in X. We consider the
model-checking problem for formulas ϕ in the prenex normal form

ϕ := Q1x1 . . . Qkxk : ψ,

1The k-SUM problem asks, given sets A1, . . . , Ak of n numbers, whether there exist a1 ∈ A1, . . . , ak ∈ Ak such
that

∑k
i=1 ai = 0. The k-SUM hypothesis states that for no ϵ > 0 there exists a O(n⌈k/2⌉−ϵ) time algorithm that

solves k-SUM.
2Note that there are different reasonable notions of reductions to consider. Rather than the quasilinear reductions

used by Bloch et al., we will consider the currently more commonly used notion of fine-grained reductions; see
Section 1.2 for details on the notion of completeness that we will use.

2

where the quantifiers Q1, . . . , Qk ∈ {∃,∀} are arbitrary. Formally, for such a ϕ, we define the model
checking problem FOPZ(ϕ) as follows

3

FOPZ(ϕ) : (1)

Input: Finite sets A1 ⊆ Zd1 , . . . , Ak ⊆ Zdk and t̂1, . . . , t̂l ∈ Z.
Problem: Does Q1x1 ∈ A1 . . . Qkxk ∈ Ak : ψ[(t1, . . . , tl)\(t̂1, . . . , t̂l)] hold?

We let n := maxi{|Ai|} denote the input size and will assume throughout the paper that all input
numbers (i.e., the coordinates of the vectors in A1, . . . , Ak and the values t̂1, . . . , t̂l) are chosen from
a polynomially sized universe, i.e., {−U, . . . , U} with U ≤ nc for some c. Let FOPZ be the union of
all FOPZ(ϕ) problems, where ϕ has at least 3 quantifiers.4 Besides 3-SUM, a variety of interesting
problems is contained in FOPZ; we discuss a few notable examples below and further examples in
Section B in the Appendix.

Frequently, we distinguish formulas in FOPZ using their quantifier structure; e.g., FOPZ(∃∃∀)
describes the class of model checking problems FOPZ(ϕ) where in ϕ we have Q1 = Q2 = ∃ and
Q3 = ∀. Furthermore, we let FOPkZ be the union of all FOPZ(ϕ) problems, where ϕ consists of
precisely k quantifiers, regardless of their quantifier structure. For a quantifier Q ∈ {∃,∀}, we write
Qk for the repetition Q . . .Q︸ ︷︷ ︸

k times

. Finally, we remark that a small subset of FOPZ has already been

studied by An et al. [11], for a discussion see Section 1.3.

1.2 Our Contributions

We seek to determine completeness results for the class FOPZ. In particular: What are the largest
fragments of this class for which 3-SUM (or more generally, k-SUM) is complete? Is there a problem
that is complete for the entire class?

Intuitively, we say that a TA(n)-time solvable problem A is (fine-grained) complete for a TC(n)-
time solvable class of problems C, if the existence of an O(TA(n)

1−ϵ)-time algorithm for A with
ϵ > 0 implies that for all problems C in C there exists δ > 0 such that C can be solved in
time O(TC(n)

1−δ). We extend this notion to completeness of a family of problems, since strictly
speaking, any (geometric) problem over Zd expressible in linear integer arithmetic corresponds to
a family of formulas FOPZ (one for each d ∈ N). Formally, consider a family of problems P with
an associated time bound TP(n) and a class of problems C with an associated time bound TC(n);
usually TP(n), TC(n) denote the running time of the fastest known algorithm solving all problems
in P or C, respectively (often, we omit these time bounds, as they are clear from context).5 We say
that P is (fine-grained) complete for C, if

1. the family P is a subset of the class C, and

2. if for all problems P in P there exists ϵ > 0 such that P can be solved in time O(TP(n)
1−ϵ),

then for all problems C in C there exists some δ > 0 such that we can solve C in time
O(TC(n)

1−δ).

3Below, we use the notation ψ[(t1, . . . , tl)\(t̂1, . . . , t̂l)] to denote the substitution of the variables t1, . . . , tl by
t̂1, . . . , t̂l respectively.

4It is not too difficult to see that all formulas with 2 quantifiers can be model-checked in near-linear time; see
Section C.2 in the Appendix for further details.

5Here, we use family and class as a purely semantic and intuitive distinction: A family consists of a small set of
similar problems, and a class consists of a large and diverse variety of problems.

3

That is, a polynomial-factor improvement for solving the problems in P would lead to a polynomial-
factor improvement in solving all problems in C. If a singleton family P = {P} is fine-grained
complete for C, then we also say that P is fine-grained complete for C. We work with standard
hypotheses and problems encountered in fine-grained complexity; for detailed definition of these,
we refer to Section A in the Appendix.

1.2.1 k-SUM is complete for the existential fragment of FOPZ

Consider first the existential fragment of FOPZ, i.e., formulas exhibiting only existential quantifiers.
Any FOPZ formula with k existential quantifiers can be decided using a standard meet-in-the-middle
approach, augmented by orthogonal range search, in time Õ(n⌈k/2⌉)6, we refer to Section C in the
Appendix for details. Since k-SUM is a member of FOPZ(∃k), this running time is optimal up to
subpolynomial factors, assuming the k-SUM Hypothesis. As our first contribution, we provide a
converse reduction. Specifically, we show that a polynomially improved k-SUM algorithm would
give a polynomially improved algorithm for solving the entire class. In our language, we show that
k-SUM is fine-grained complete for formulas of FOPZ with k existential quantifiers.

Theorem 1.1 (k-SUM is FOPZ(∃k)-complete). Let k ≥ 3 and assume that k-SUM can be solved
in time TkSUM(n). For any problem P in FOPZ(∃k), there exists some c such that P can be solved
in time O(TkSUM(n) logc n).

Thus, if there are k ≥ 3 and ϵ > 0 such that we can solve k-SUM in time O(n⌈k/2⌉−ϵ), then we
can solve all problems in FOPZ(∃k) in time O(n⌈k/2⌉−ϵ

′
) for any 0 < ϵ′ < ϵ. By a simple negation

argument, we conclude that k-SUM is also complete for the class of problems FOPZ(∀k).
The above theorem generalizes and unifies previous reductions from problems expressible as

FOPZ(∃k) formulas to 3-SUM, using different proof ideas: Jafargholi and Viola [48, Lemma 4] give
a simple randomized linear-time reduction from triangle detection in sparse graphs to 3-SUM, and a
derandomization via certain combinatorial designs; for a proof using the completeness theorem see
Example B.7 in the Appendix. Dudek, Gawrychowski, and Starikovskaya [37] study the family of
3-linear degeneracy testing (3-LDT), which constitutes a large and interesting subset of FOPZ(∃∃∃):
This family includes, for any α1, α2, α3, t ∈ Z, the 3-partite formula ∃a1 ∈ A1∃a2 ∈ A2∃a3 ∈ A3 :
α1a1 + α2a2 + α3a3 = t and the 1-partite formula ∃α1, α2, α3 ∈ A : α1a1 + α2a2 + α3a3 = t ∧ a1 ̸=
a2 ∧ a2 ̸= a3 ∧ a1 ̸= a3. The authors show that each such formula is either trivial or subquadratic
equivalent to 3-SUM. For 3-partite formulas, a reduction to 3-SUM is essentially straightforward.
For 1-partite formulas, Dudek et al. [37] use color coding.7 As further examples for reductions from
FOPZ problems to k-SUM, we highlight a reduction from Vector k-SUM to k-SUM [5] as well as a
reduction from (min,+)-convolution to 3-SUM (see [13, 35]) based on a well-known bit-level trick
due to Vassilevska Williams and Williams [62], which allows us to reduce inequalities to equalities.

Perhaps surprisingly in light of its generality and applicability, Theorem 1.1 is obtained via a
very simple, deterministic reduction that combines the tricks from [5, 62]. This generality comes
at the cost of polylogarithmic factors (which we do not optimize), which depend on the number of
inequalities occurring in the considered formula; for the details see Section 3.

6We use the notation Õ(T) := T logO(1)(T) to hide polylogarithmic factors.
7We remark that the reverse direction, i.e., 3-SUM-hardness of non-trivial formulas, is technically much more

involved and can be regarded as the main technical contribution of [37].

4

1.2.2 Completeness for counting witnesses

We provide a certain extension of the above completeness result to the problem class of counting
witnesses to existential FOPZ formulas8. Counting witnesses is an important task particularly in
database applications (usually referred to as model counting). Furthermore, we will make use of
witness counting to decide certain quantified formulas in subsequent results detailed below and
found in Section 4.

Theorem 1.2. Let k ≥ 3 be odd. If there is ϵ > 0 such that we can count the number of witnesses
for k-SUM in time O(n⌈k/2⌉−ϵ), then for all problem P in FOPZ(∃k), there is some ϵ′ > 0 such that
we can count the number of witnesses for P in time O(n⌈k/2⌉−ϵ

′
).

Leveraging the recent breakthrough by [29] that 3-SUM is subquadratic equivalent to counting
witnesses of 3-SUM, we obtain the corollary that 3-SUM is hard even for counting witnesses of
FOPZ(∃3).

Corollary 1.3. For all problems P in FOPZ(∃3), there is some ϵP > 0 such that we can count the
number of witnesses for P in randomized time O(n2−ϵP) if and only if there is some ϵ′ > 0 such
that 3-SUM can be solved in randomized time O(n2−ϵ

′
).

1.2.3 Completeness for general quantifier structures of FOPZ

In light of our first completeness result, one might wonder whether k-SUM is complete for deciding
all k-quantifier formulas in FOPZ, regardless of the quantifier structure of the formulas.

Note that for these general quantifier structures, a baseline algorithm with running time Õ(nk−1)
can be achieved by a combination of brute-force and orthogonal range queries; see Section C in the
Appendix for details.

However, by [11, Theorem 15] there exists a FOPZ(∃k−1∀)-formula ϕ that cannot be solved in
time O(nk−1−ϵ)-time unless the 3-uniform hyperclique hypothesis is false (see the discussion in Sec-
tion 1.3 and Hypothesis A.12). Thus, proving that 3-SUM is complete for all 3-quantifier formulas
would establish that the 3-uniform hyperclique hypothesis implies the 3-SUM hypothesis – this
would be a novel tight reduction among important problems/hypotheses in fine-grained complexity
theory. For k ≥ 4, it becomes even more intricate: the conditionally optimal running time of

nk−1±o(1) for FOPZ(∃k∀) formulas exceeds the conditionally optimal running time of n⌈
k
2
⌉±o(1) for

FOPZ(∃k) formulas.
We are nevertheless able to obtain a completeness result for general quantifier structures: Specif-

ically, we show that if two geometric problems over Zd can be solved in time O(n2−ϵd) where ϵd > 0
for all d, then each k-quantifier formula in FOPZ can be decided in time O(nk−1−ϵ) for some ϵ > 0.
These problems are (1) a variation of the Hausdorff distance that we call Hausdorff distance under
n Translations and (2) the Pareto Sum problem; the details are covered in Section 5. These results
enable a clear picture of the class FOPZ. Furthermore, they still relate to the aim of studying the
power of the 3-SUM problem, by showcasing clear limits to the power of 3-SUM.

Hausdorff Distance under n Translations Among the most common translation-invariant
distance measures for given point sets B and C is the Hausdorff Distance under Translation [32,
24, 26, 31, 55, 47].To define it, we denote the directed Hausdorff distance under the L∞ metric

8A witness for a FOPZ(∃k) formula ∃a1 ∈ A1 . . .∃ak ∈ Ak : φ with t̂1, . . . , t̂l ∈ Z is a tuple (a1, . . . , ak) ∈
A1 × · · · ×Ak that satisfies the formula φ[(t1, . . . , tl)\(t̂1, . . . , t̂l)].

5

by δ−→
H
(B,C) := maxb∈Bminc∈C ∥b − c∥∞.9 The Hausdorff distance under translation δT−→

H
(B,C) is

defined as the minimum Hausdorff distance of B and an arbitrary translation of C, i.e.,

δT−→
H
(B,C) := min

τ∈Rd
δ−→
H
(B,C + {τ}) = min

τ∈Rd
max
b∈B

min
c∈C
∥b− (c+ τ)∥∞.

For d = 2, Bringmann and Nusser [24] were able to show a (|B||C|)1−o(1) time lower bound based
on the orthogonal vector hypothesis, and there exists a matching Õ(|B||C|) upper bound by Chew
et al. [33].

We shall establish that restricting the translation vector to be among a set of m candidate
vectors yields a central problem in FOPZ. Specifically, we define the Hausdorff distance under

Translation in A, denoted as δ
T (A)
−→
H

(B,C), by

δ
T (A)
−→
H

(B,C) := min
τ∈A

δ−→
H
(B,C + {τ}) = min

τ∈A
max
b∈B

min
c∈C
∥b− (c+ τ)∥∞.

Correspondingly, we define the problemHausdorff distance underm Translations as: GivenA,B,C ⊆
Zd with |A| ≤ m, |B|, |C| ≤ n and a distance value γ ∈ N, determine whether δ

T (A)
−→
H

(B,C) ≤ γ.

Note that this can be rewritten as a FOPZ(∃∀∃)-formula; see Example B.6 in the Appendix for
details.

The Hausdorff distance under m Translations occurs naturally when approximating the Haus-
dorff distance under translation: Specifically, common algorithms compute a set A of |A| = f(ϵ)

translations such that δ
T (A)
−→
H

(B,C) ≤ (1 + ϵ)δT−→
H
(B,C). Generally, this problem is then solved by

performing |A| computations of the Hausdorff distance, which yields Õ(|A|n) = Õ(f(ϵ)n)-time
algorithms [58]. Improving over the Õ(mn)-time baseline for Hausdorff Distance under m Transla-
tions would thus lead to immediate improvements for approximating the Hausdorff Distance under
Translation. Our results will establish additional consequences of fast algorithms for this problem:
an O(n2−ϵd)-time algorithm with ϵd > 0 for Hausdorff distance under n Translations would give an
algorithmic improvement for the classes of FOPZ(∃∀∃)- and FOPZ(∀∃∀)-formulas.

Verification of Pareto Sums Our second geometric problem is a verification version of com-
puting Pareto sums: Given point sets A,B ⊆ Zd, the Pareto sum C of A,B is defined as the Pareto
front of their sumset A+ B = {a+ b | a ∈ A, b ∈ B}. Put differently, the Pareto sum of A,B is a
set of points C satisfying (1) C ⊆ A+B, (2) for every a ∈ A and b ∈ B, the vector a+ b is domi-
nated10 by some c ∈ C and (3) there are no distinct c, c′ ∈ C such that c′ dominates c. The task
of computing Pareto sums appears in various multicriteria optimization settings [12, 57, 38, 54];
fast output-sensitive algorithms (both in theory and in practice) have recently been investigated
by Hespe, Sanders, Storandt, and Truschel [46].

We consider the following problem as Pareto Sum Verification: Given A,B,C ⊆ Zd, determine
whether

∀a ∈ A∀b ∈ B∃c ∈ C : a+ b ≤ c.
9Since we will exclusively consider the directed Hausdorff distance under Translation, we will drop “directed”

throughout the paper.
10We consider the usual domination notion: A vector u ∈ Zd is dominated by some vector v ∈ Zd (written u ≤ v)

if and only if in all dimensions i ∈ [d] it holds that u[i] ≤ v[i].

6

The complexity of Pareto Sum Verification11 is tightly connected to output-sensitive algorithms for
Pareto sum. Specifically, solving Pareto Sum Verification reduces to computing the Pareto sum C
when given inputs A,B of size at most n with the promise that |C| = Θ(n); see Section 7.3 for
details. The work of Hespe et al. [46] gives a practically fast O(n2)-time algorithm in this case for
d = 2; note that for d ≥ 3, we still obtain an Õ(n2)-time algorithm via our baseline algorithm,
which is described in Section C.3 in the Appendix.

A problem pair that is complete for FOPZ As a pair, these two geometric problems turn out
to be fine-grained complete for the class FOPZ.

Theorem 1.4. There is a function ϵ(d) > 0 such that both of the following problems can be solved
in time O(n2−ϵ(d))

• Pareto Sum Verification,

• Hausdorff distance under n Translations,

if and only if for each problem P in FOPkZ with k ≥ 3 there exists an ϵP > 0 such that P can be
solved in time O(nk−1−ϵP).

The above theorem shows that a single pair of natural problems captures the fine-grained
complexity of the expressive and diverse class FOPZ. As an illustration just how expressive this
class is, we observe the following barriers:12

1. If there is some ϵ > 0 such that all problems in FOPZ(∃∃∀) (or FOPZ(∀∀∃)) can be solved in
time O(n2−ϵ), then OVH (and thus SETH) is false [11, Theorem 16].

2. If there is some ϵ > 0 such that all problems in FOPZ(∃∀∃) (or FOPZ(∀∃∀)) can be solved in
time O(n2−ϵ), then the Hitting Set Hypothesis is false [11, Theorem 12].

3. If for all problems P in FOPZ(∃∃∀) (or FOPZ(∀∀∃)), there exists some ϵ > 0 such that we can
solve P in O(n2−ϵ), then the 3-uniform Hyperclique Hypothesis is false [11, Theorem 15].

4. If for all problems P in FOPZ(∃∃∃) (FOPZ(∀∀∀),FOPZ(∀∀∃), or FOPZ(∃∃∀)), there exists
some ϵ > 0 such that we can solve P in time O(n2−ϵ), then the 3-SUM Hypothesis is false
(Theorem 1.1 with Lemma 2.4).

5. If for all problems in FOPZ(∀∃∃) (or FOPZ(∃∀∃)), there exists some ϵ > 0 such that we can
solve the problem in O(n2−ϵ), then MaxConv lower bound13 can be solved in time O(n2−ϵ)
(Lemma B.8).

Theorem 1.4 raises the question whether for any constant dimension d, the Hausdorff distance under
n Translations admits a subquadratic reduction to Pareto Sum Verification. A positive answer
would establish Pareto Sum Verification as complete for the entire class FOPZ. We elaborate on
this in Section 8.

11We remark that our problem definition only checks a single of the three given conditions, specifically, condition (2).
However, in Section 7.3, we will establish that the verifying all three conditions reduces to verifying this single
condition. More specifically, for sets A,B,C of size at most n, we obtain that if we can solve Pareto Sum Verification
in time T (n), then we can check whether C is the Pareto sum of A,B in time O(T (n)).

12The first three statements follow from FOPZ generalizing the class PTO studied in [11], see Section 1.3. The
remaining statements rely on the additive structure of FOPZ.

13See Definition A.13.

7

1.2.4 3-SUM is complete for FOPZ formulas of low inequality dimension

Returning to our motivating question, we ask: Since it appears unlikely to prove completeness of 3-
SUM for all FOPZ formulas (as this requires a tight 3-uniform hyperclique lower bound for 3-SUM),
can we at least identify a large fragment of FOPZ for which 3-SUM is complete? In particular, can
we extend our first result of Theorem 1.1 from existentially quantified formulas to substantially
different problems in FOPZ, displaying other quantifier structures?

Surprisingly, we are able to show that 3-SUM is complete for low-dimensional FOPZ formu-
las, independent of their quantifier structure. To formalize this, we introduce the inequality di-
mension of a FOPZ formula as the smallest number of linear inequalities required to model it.
More formally, consider a FOPZ formula ϕ = Q1x1 ∈ A1, . . . , Qkxk ∈ Ak : ψ with Ai ⊆ Zdi .
The inequality dimension of ϕ is the smallest number s such that there exists a Boolean func-
tion ψ′ : {0, 1}s → {0, 1} and (strict or non-strict) linear inequalities L1, . . . , Ls in the variables
{xi[j] : i ∈ {1, . . . , k}, j ∈ {1, . . . , di}} and the free variables such that ψ(x1, . . . , xk) is equivalent to
ψ′(L1, . . . , Ls). As an example, the 3-SUM formula ∃a ∈ A∃b ∈ B∃c ∈ C : a+ b = c has inequality
dimension 2, as a+ b = c can be modelled as a conjunction of the two linear inequalities a+ b ≤ c
and a+ b ≥ c, whereas no single linear inequality can model a+ b = c.

We show that 3-SUM is fine-grained complete for model-checking FOP3
Z formulas with inequal-

ity dimension at most 3. This result is our perhaps most interesting technical contribution and
intuitively combines our result that 3-SUM is hard for counting FOPZ witnesses (Corollary 1.3)
with a geometric argument, specifically, that the union of n unit cubes in R3 can be decomposed
into the union of O(n) pairwise interior- and exterior-disjoint axis-parallel boxes. To this end, we
extend a result from [31], which constructs pairwise interior-disjoint axis-parallel boxes, to also
achieve exterior-disjointness. For more details, see the Technical Overview below and Section 6.

Theorem 1.5. There is an algorithm deciding 3-SUM in randomized time O(n2−ϵ) for an ϵ > 0,
if and only if for each problem P in FOPkZ with k ≥ 3 and inequality dimension at most 3, there
exists some ϵ′ > 0 such that we can solve P in randomized time O(nk−1−ϵ′).

Note that this fragment of FOPZ contains a variety of interesting problems. A general example
is given by comparisons of sets defined using the sumset arithmetic14, which correspond to formulas
of inequality dimension at most 2: E.g., checking, given sets A,B,C ⊆ Z and t ∈ Z, whether C
is an additive t-approximation of the sumset A + B is equivalent to verifying the conjunction of
the FOPZ(∀∀∃) problem15 A+ B ⊆ C + {0, . . . , t} and (2) the FOPZ(∀∃∃) problem16 C ⊆ A+ B.
Likewise, this extends to λ-multiplicative approximations of sumsets. Furthermore, the problems
corresponding to general sumset comparisons like α1A1 + · · · + αiAi ⊆ αi+1Ai+1 + · · · + αkAk +
{−ℓ, . . . , u} have inequality dimension at most 2 as well.

Our results of Theorems 1.4 and 1.5 suggests to view Pareto Sum Verification as a geometric,
high-dimensional generalization of 3-SUM. Furthermore, it remains an interesting problem to es-
tablish the highest d such that 3-SUM is complete for FOPZ formulas of inequality dimension at
most d; for a discussion see Section 8.

Further Applications As an immediate application of our first completeness theorem, we obtain
a simple proof of a n4/3−o(1) lower bound for the 4-SUM problem based on the 3-uniform hyperclique

14The sumset arithmetic uses the sumset operator X + Y to denote the sumset {x+ y | x ∈ X, y ∈ Y } and λX to
denote {λx | x ∈ X}.

15Note that the corresponding formula is ∀a ∈ A∀b ∈ B∃c ∈ C : (c ≤ a + b) ∧ (a + b ≤ c + t), which clearly has
inequality dimension at most 2.

16Note that the corresponding formula is ∀c ∈ C∃a ∈ A∃b ∈ B : a+ b = c, which clearly has inequality dimension
at most 2.

8

hypothesis; see Section 7 for details. Specifically, by Theorem 1.1, it suffices to model the 3-uniform
4-hyperclique problem as a problem in FOPZ(∃∃∃∃). The resulting conditional lower bound is
implicitly known in the literature, as it can alternatively be obtained by combining a 3-uniform
hyperclique lower bound for 4-cycle given in [53] with a folklore reduction from 4-cycle to 4-SUM
(see [48] for a deterministic reduction from 3-cycle to 3-SUM).

Theorem 1.6. If there is some ϵ > 0 such that 4-SUM can be solved in time O(n
4
3
−ϵ), then the

3-uniform hyperclique hypothesis fails.

Similarly, we can also give a simple proof for a known lower bound for 3-SUM.
Another application of our results is to establish class-based conditional bounds. As a case

in point, consider the problem of computing the Pareto sum of A,B ⊆ Zd: Clearly, this problem
can be solved in time Õ(n2) by explicitly computing the sumset A+B and computing the Pareto
front using any algorithm running in near-linear time in its input, e.g. [43]. We prove the following
conditional optimality results already in the case when the desired output (the Pareto sum of A,B)
has size Θ(n).

Theorem 1.7 (Pareto Sum Computation Lower Bound). The following conditional lower bounds
hold for output-sensitive Pareto sum computation:

1. If there is ϵ > 0 such that we can compute the Pareto sum C of A,B ⊆ Z2, whenever C is of
size Θ(n), in time O(n2−ϵ), then the 3-SUM hypothesis fails (thus, for any FOPkZ formula ϕ of
inequality dimension at most 3, there is ϵ′ > 0 such that ϕ can be decided in time O(nk−1−ϵ′)).

2. If for all d ≥ 2, there is ϵ > 0 such that we can compute the Pareto sum C of A,B ⊆ Zd,
whenever C is of size Θ(n), in time O(n2−ϵ), then there is some ϵ′ > 0 such that we can
decide all FOPZ formulas with k quantifiers not ending in ∃∀∃ or ∀∃∀ in time O(nk−1−ϵ′).

Our lower bound for 2D strengthens a quadratic-time lower bound found by Funke et al. [42]
based on the (min,+)-convolution hypothesis to hold already under the weaker (i.e., more believ-
able) 3-SUM hypothesis. For higher dimensions, we furthermore strengthen the conditional lower
bound via its connection to FOPZ.

We conclude with remaining open questions in Section 8.

1.3 Further Related Work

To our knowledge, the first investigation of the connection between classes of model-checking prob-
lems and central problems in fine-grained complexity was given by Williams [59], who shows that
the k-clique problem is complete for the class of existentially-quantified first order graph proper-
ties, among other results. As important follow-up work, Gao et al. [45] establish OV as complete
problem for model-checking any first-order property.

Subsequent results include classification results for ∃k∀-quantified first-order graph proper-
ties [18], fine-grained upper and lower bounds for counting witnesses of first-order properties [36],
completeness theorems for multidimensional ordering properties [11] (discussed below), complete-
ness and classification results for optimization classes [16, 17] as well as an investigation of sparsity
for monochromatic graph properties [41].

We remark that An et al. [11] study completeness results for a strict subset of FOPZ formulas:
Specifically, they introduce a class PTOk,d of k-quantifier first-order sentences over inputs Nd (or,
without loss of generality {1, . . . , n}d) that may only use comparisons of coordinates (and con-
stants). Note that such sentences lack additive structure, and indeed the fine-grained complexity

9

differs decisively from FOPZ: E.g., for PTO(∃∃∃) formulas, they establish the sparse triangle detec-
tion problem as complete, establishing a conditionally tight running time of m2ω/(ω+1)±o(1). This is
in stark contrast to FOPZ(∃∃∃) formulas, for which we establish 3-SUM as complete problem, yield-
ing a conditionally optimal running time of n2±o(1). In particular, for each 3-quantifier structure
Q1Q2Q3, a O(n2−ϵ)-time algorithm for all FOPZ(Q1Q2Q3) problems would break a corresponding
hardness barrier17.

Since any PTOk,d formula is also a FOPZ formula with the same quantifier structure, any
hardness result in [11] for PTO(Q1, . . . , Qk) carries over to FOPZ(Q1, . . . , Qk). On the other hand,
any of our algorithmic results for FOPZ(Q1, . . . , Qk) transfers to its subclass PTO(Q1, . . . , Qk).

2 Technical Overview

In this section, we sketch the main ideas behind our proofs.

Completeness of k-SUM for FOPZ(∃k) With the right ingredients, proving that k-SUM is
complete for FOPZ formulas with k existential quantifiers (Theorem 1.1) is possible via a simple
approach: We observe that any FOPZ(∃k) formula ϕ can be rewritten such that we may assume that
ϕ is a conjunction of m inequalities. We then use a slight generalization of a bit-level trick of [62] to
reduce each inequality to an equality, incurring only O(log n) overhead per inequality (intuitively,
we need to guess the most significant bit position at which the left-hand side and the right-hand
side differ). Thus, we obtain O(logm n) conjunctions of m equalities; each such conjunction can be
regarded as an instance of Vector k-SUM. Using a straightforward approach for reducing Vector
k-SUM to k-SUM given in [5], the reduction to k-SUM follows. We give all details in Section 3.

Counting witnesses and handling multisets While the reduction underlying Theorem 1.1
preserves the existence of solutions, it fails to preserve the number of solutions. The challenge is
that when applying the bit-level trick to reduce inequalities to equalities, we need to make sure
that for each witness of a FOPZ(∃k) formula ϕ, there is a unique witness in the k-SUM instances
produced by the reduction. While it is straightforward to ensure that we do not produce multiple
witnesses, the subtle issue arises that distinct witnesses for ϕ may be mapped to the same witness
in the k-SUM instances. It turns out that it suffices to solve a multiset version of #k-SUM, i.e., to
count all witnesses in a k-SUM instance in which each input number may occur multiple times.

Thus, to obtain Theorem 1.2, we show a fine-grained equivalence of Multiset #k-SUM and
#k-SUM, for all odd k ≥ 3. This fine-grained equivalence, which we prove via a heavy-light ap-
proach, might be of independent interest.18 Combining this equivalence with an inclusion-exclusion
argument, we may thus lift Theorem 1.1 to a counting version for all odd k ≥ 3.

In the reductions below, we will make crucial use of the immediate corollary of Theorem 1.2
and [29] that for each FOPZ(∃∃∃) formula ϕ, there exists a subquadratic reduction from counting
witnesses for ϕ to 3-SUM (Corollary 1.3).

17Specifically, an O(n2−ϵ) time algorithm for problems in FOPZ(∃∃∃),FOPZ(∀∀∀),FOPZ(∀∀∃), or FOPZ(∃∃∀) with
ϵ > 0 would refute the 3-SUM hypothesis. Furthermore, an O(n2−ϵ) time algorithm for problems in FOPZ(∀∃∃),
FOPZ(∃∀∀), FOPZ(∃∀∃), or FOPZ(∀∃∀) with ϵ > 0 would immediately yield an improvement for the MaxConv lower
bound problem [35]; for details see Section B in the Appendix.

18We remark that it is plausible that the proof of the subquadratic equivalence of 3-SUM and #3-SUM due to Chan
et al. [29] could be extended to establish subquadratic equivalence with Multiset #3-SUM as well. Note, however,
that a fine-grained equivalence of #k-SUM and k-SUM is not known for any k ≥ 4.

10

On general quantifier structures We perform a systematic study on the different quantifier
structures for k = 3. Due to simple negation arguments, we only have to perform a systematic
study on the classes of problems FOPZ(∃∃∃), FOPZ(∀∃∃), FOPZ(∀∀∃), FOPZ(∃∀∃).

First, we state a simple lemma establishing syntactic complete problems, for the classes above.

Lemma 2.1 (Syntactic Complete problems (Informal Version)). Let Q1, Q2 ∈ {∃,∀}. We can
reduce every formula of the class FOPZ(Q1Q2∃) to the formula

Q1ã1 ∈ Ã1Q2ã2 ∈ Ã2∃ã3 ∈ Ã3 : ã1 + ã2 ≤ ã3.

On the quantifier change FOPZ(∀∃∃)→ FOPZ(∃∃∃). We rely on the subquadratic equivalence
between 3-SUM and a functional version of 3-SUM called All-ints 3-SUM, which aims to determine
for every a ∈ A whether there is a solution involving a. A randomized subquadratic equivalence
was given in [61], which can be turned deterministic [52].

This equivalence allows us to use the bit-level trick to turn inequalities to equalities, despite
it seemingly not interacting well with the quantifier structure ∀∃∃ at first sight. This results in a
proof of the following hardness result.

Lemma 2.2. If 3-SUM can be solved in time O(n2−ϵ) for an ϵ > 0, then all problems P of
FOPZ(∀∃∃) can be solved in time O(n2−ϵP) for an ϵP > 0.

On the quantifier change FOPZ(∃∃∃)→ FOPZ(∀∀∃). As a first result for the class FOPZ(∀∀∃),
we are able to show equivalence to 3-SUM for a specific problem in this class, thus introducing a 3-
SUM equivalent problem with a different quantifier structure in comparison to 3-SUM. Specifically,
we consider the problem of verifying additive t-approximation of sumsets. We are able to precisely
characterize the fine-grained complexity depending on t.

Formally, we show the following theorem.

Theorem 2.3. Consider the Additive Sumset Approximation problem of deciding, given A,B,C ⊆
Z, t ∈ Z, whether

A+B ⊆ C + {0, . . . , t}.

This problem is

• solvable in time O(n2−δ) with δ > 0, whenever t = O(n1−ϵ) for any ϵ > 0,

• not solvable in time O(n2−ϵ), whenever t = Ω(n) assuming the Strong convolutional 3-SUM
hypothesis.

Furthermore, subquadratic hardness holds under the standard 3-SUM Hypothesis if no restriction
on t is made.

The above theorem is essentially enabling a quantifier change transforming the ∃∃∃ quantifier
structure for which 3-SUM is complete into a subquadratic equivalent problem with a quantifier
structure ∀∀∃. Moreover, the 3-SUM hardness is a witness to the hardness of the class FOPZ(∀∀∃).

Let us remark a few interesting aspects: The algorithmic part follows from sparse convolution
techniques going back to Cole and Hariharan [34], see [20] for a recent account and also [27, 22, 19].
Specifically, whenever t = O(n1−ϵ), it holds that |C + {0, . . . , t}| = O(n2−ϵ) and intuitively, we can
use an output-sensitive convolution algorithm to compute A+B and compare it to C+{0, . . . , t}.19

19The argument is slightly more subtle, since we need to avoid computing A+B if its size exceeds O(n2−ϵ).

11

Our result indicates that an explicit construction of C+{0, . . . , t} is required, since once it may get
as large as Ω(n2), we obtain a n2−o(1)-time lower bound assuming the Strong 3-SUM hypothesis.

The lower bound follows from describing the 3-SUM problem alternatively as (A+B)∩C ̸= ∅,
which is equivalent to the negation of (A+B) ⊆ C̄, where C̄ denotes the complement of C. Thus,
we aim to cover the complement of C by intervals of length t. While this appears impossible for
3-SUM, we employ the subquadratic equivalence of 3-SUM and its convolutional version due to
Patrascu [56]. This problem will deliver us the necessary structure to represent this complement
with the addition of few auxilliary points.

The reverse reduction from Additive Sumset Approximation to 3-SUM follows from Theorem
1.5 (as Additive Sumset approximation has inequality dimension 2).

On completeness results for FOPkZ The above ingredients establish our completeness theorems
by exhaustive search over remaining quantifiers. Specifically, by a combination of Theorem 2.3,
which shows that Additive Sumset Approximation is 3-SUM hard, and a combination of Lemma
2.2 and Theorem 1.1, we get:

Lemma 2.4. There is a function ϵ(d) > 0 such that the Verification of Pareto Sum problem can
be solved in time O(n2−ϵ(d)) if and only if all problems P in the classes

• FOPZ(Q1 . . . Qk−3∃∃∃),FOPZ(Q1 . . . Qk−3∀∀∀),

• FOPZ(Q1 . . . Qk−3∀∃∃),FOPZ(Q1 . . . Qk−3∃∀∀),

• FOPZ(Q1 . . . Qk−3∀∀∃),FOPZ(Q1 . . . Qk−3∃∃∀),

where Q1, . . . Qk−3 ∈ {∃, ∀} and k ≥ 3, can be solved in time O(nk−1−ϵP) for an ϵP > 0.

Similarly, for quantifier structures ending in ∃∀∃ and ∀∃∀ FOPZ, we obtain the following com-
pleteness result.

Lemma 2.5. There is a function ϵ(d) > 0 such that the Hausdorff Distance under n Translations
problem can be solved in time O(n2−ϵ(d)) if and only if all problems P in the classes

• FOPZ(Q1 . . . Qk−3∃∀∃),FOPZ(Q1 . . . Qk−3∀∃∀),

where Q1, . . . Qk−3 ∈ {∃, ∀} and k ≥ 3, can be solved in time O(nk−1−ϵP) for an ϵP > 0.

The combination of Lemma 2.4 and Lemma 2.5, thus suffice to prove Theorem 1.4.

The 3-SUM completeness of formulas with inequality dimension at most 3 As a first
idea, one could try to solve problems of different quantifier structures by just counting witnesses.
Consider in the following the example FOPZ(∀∀∃).

Assume we are promised that the formula ∀a ∈ A∀b ∈ B∃c ∈ Cψ(a, b, c) satisfies a kind of
disjointness property, specifically that for every (a, b) ∈ A×B there exists at most one c ∈ C such
that ψ(a, b, c). Then satisfying the formula boils down to checking whether the number of witnesses
(a, b, c) satisfiying ψ(a, b, c) equals to |A| · |B|.

To create this disjointness effect, we use the following geometric approach: We show that one
can re-interpret the formula as ∀a ∈ A∀b ∈ B : a + b ∈

⋃
c′∈C′ V (c′), where A,B,C ′ ⊆ Z3, C ′

is a set of size O(n) and V (c′) is an orthant associated to c′. Using an adapted variant of [31],
we decompose this union of orthants in R3 (which we may equivalently view as sufficiently large
congruent cubes) into a set R of O(n) disjoint boxes. Thus, it remains to notice that the resulting

12

problem, i.e., for all a ∈ A, b ∈ B is there a box R ∈ R such that a + b is contained in R, is a
FOPZ(∀∀∃) formula with the desired disjointness property, which can be handled as argued above.

For the class FOPZ(∃∀∃), we perform a slightly more involved argument. The classes FOPZ(∃∃∃)
and FOPZ(∀∃∃) reduce to 3-SUM regardless of the inequality dimension due to Theorem 1.1 and
Lemma 2.2.

3 k-SUM is complete for existential FOPZ formulas

We begin with a simple completeness theorem that k-SUM is complete for the class of problems
FOPZ(∃k). Since k-SUM is indeed a FOPZ(∃k)-formula, it remains to show a fine-grained reduction
from any FOPZ(∃k) formula to k-SUM.

As a first step towards this theorem, we consider how to reduce a conjunction of m linear
inequalities to a vector k-SUM instance.

Lemma 3.1. Consider vectors a1 ∈ {−U, . . . , U}d1 , . . . , ak ∈ {−U, . . . , U}dk , integers S1, . . . , Sm ∈
{−U, . . . , U}, for each i ∈ {1, . . . ,m}, j ∈ {1, . . . , k}, vectors ci,j ∈ Zdj , a sufficiently large number
M 20 and a formula

ψ :=
m∧
i=1

(
cTi,jaj ≥ Si

)
.

There exist O(1) time computable functions f ℓ,ψ1 , . . . , f ℓ,ψk , gℓ,ψ,W such that the following statements
are equivalent

1. The formula
∧m
i=1

(∑k
j=1 c

T
i,jaj ≥ Si

)
holds.

2. There are ℓ ∈ {1, . . . , ⌈log2(M)⌉}m,W ∈ {1, . . . , k}m such that f ℓ,ψ1 (a1) + · · · + f ℓ,ψk (ak) =
gℓ,ψ,W (S1, . . . , Sm).

Moreover, if the second item holds, there is a unique choice of such ℓ and W .

Essentially, the above lemma enables a reduction from a conjunction of inequality checks to a
conjunction of equality checks. The full proof can be found in Section D in the Appendix. We can
now continue with our completeness theorem.

Theorem 1.1 (k-SUM is FOPZ(∃k)-complete). Let k ≥ 3 and assume that k-SUM can be solved
in time TkSUM(n). For any problem P in FOPZ(∃k), there exists some c such that P can be solved
in time O(TkSUM(n) logc n).

Proof. The high-level approach is as follows: Firstly, we massage our linear arithmetic formula into
a normal form which is suitable to apply Lemma 3.1, and apply Lemma 3.1 to transform each
inequality to an equality. Lastly, we get vector k-SUM instances which can be transformed into
k-SUM instances as described in Lemma A.5.

Consider any fixed FOPZ(∃k) formula ϕ. Let A1 ⊆ Zd1 , . . . , Ak ⊆ Zdk and t̂1, . . . , t̂ℓ ∈ Z be an
instance of FOPZ(ϕ). We first substitute the free variables t1, . . . , tℓ by t̂1, . . . t̂ℓ, which yields the
sentence ϕ[(t1, . . . , tl)\(t̂1, . . . , t̂l)]. We then transform this sentence into disjunctive normal form
(DNF), more specifically, into the following form:

∃a1 ∈ A1 . . . ∃ak ∈ Ak :
H∨
h=1

m∧
i=1

 k∑
j=1

cTh,i,jaj ≥ Sh,i

 , (2)

20Let C := max{|ci,j [k]| : i ∈ {1, . . . ,m}, j ∈ {1, . . . , k}, k ∈ {1, . . . , dj}} and D := maxki=1 di We construct M to
be sufficiently large for our purposes i.e M := 4DUC.

13

where H,m ∈ N, each S1,1, . . . , SH,m ∈ Z, and for each h ∈ {1, . . . ,H}, i ∈ {1, . . . ,m}, j ∈
{1, . . . , k}, ch,i,j ∈ Zdj . Transforming a formula into DNF is a standard routine in Linear Integer
Arithmetic, see, e.g. [50]. Note that we may in particular assume that each conjunction involves
only inequalities of the form

∑k
j=1 c

T
h,i,jaj ≥ Sh,i. To see this, note that over the integers, a strict

inequality x > y is equivalent to the non-strict inequality x ≥ y + 1. Furthermore, an equality
x = y can be rewritten as the conjunction of two inequalities x ≤ y ∧ y ≤ x, similarly x ̸= y can be
rewritten as x < y ∨ y < x, and finally x ≤ y is equivalent to −x ≥ −y.

Due to the commutativity of disjunction and existential quantifiers, Equation (2) is equivalent
to
∨H
h=1 ϕh, where

ϕh := ∃a1 ∈ A1 . . . ∃ak ∈ Ak :
m∧
i=1

 k∑
j=1

cTh,i,jaj ≥ Sh,i

 .

In the remainder of the proof, we will show that any ϕh can be decided in time O(TkSUM(n) logm n)
time, from which the claim follows, as H and m are constants.

Thus, it suffices to consider an arbitrary formula of the form

ϕ̂ := ∃a1 ∈ A1 . . . ∃ak ∈ Ak :
m∧
i=1

 k∑
j=1

cTi,jaj ≥ Si

 . (3)

By a simple application of Lemma 3.1 deciding Equation 3 can be reduced to deciding the
following expression:

∃l ∈ {1, . . . , ⌈log2(M)⌉}m∃W ∈ {1, . . . , k}m∃a1 ∈ f l,ϕ̂1 (A1) . . . ∃ak ∈ f l,ϕ̂k (Ak) :

a1 + · · ·+ ak = gl,ϕ̂,W (S1, . . . , Sm). (4)

Equation 4 can be decided by (⌈log2(M)⌉m · km) = O(⌈log2(M)⌉m) calls to (M,m)-vector k-SUM
instances. These can be reduced to k-SUM instances using Lemma A.5 [5], in time Õ(n logm(M)) =
Õ(n), where M = poly(n) is chosen according to the proof of Lemma 3.1. For the correctness, we
remark that due to the commutativity of existential quantifiers, Equation 4 is equivalent to

∃a1 ∈ A1 . . . ∃ak ∈ Ak∃l ∈ {1, . . . , ⌈log2((k + 1)M)⌉}m∃W ∈ {1, . . . , k}m :

f l,ϕ̂1 (a1) + · · ·+ f l,ϕ̂k (ak) = gl,ϕ̂,W (S1, . . . , Sm)

Lm.3.1⇐⇒ ∃a1 ∈ A1 . . . ∃ak ∈ Ak :
m∧
i=1

k∑
j=1

cTi,jaj ≥ Si.

4 On counting witnesses in FOPZ

In this section, we show reductions from counting witnesses of FOPZ(∃k) formulas to #k-SUM,
specifically, we prove Theorem 1.2. To do so, we adapt the proof of Theorem 1.1 given in Section 3
to a counting version. As discussed in Section 2, this requires us to work with a multiset version of
#k-SUM. Handling multisets is thus the main challenge addressed in this section. Formally, we say
that a multiset is a set A together with a function f : A→ N. For a ∈ A, we abbreviate na := f(a)
as the multiplicity of a. To measure multiset sizes, we still think of each a to have na copies in the
input, i.e. the size of A is

∑
a∈A na.

14

Definition 4.1 ((U, d)-vector Multiset #k-SUM). Let X := {−U, . . . , U}d. Given k multisets
A1, . . . , Ak ⊆ X and t ∈ X, we ask for the total number of k-SUM witnesses, that is

∑
a1+···+ak=t,

a1∈A1,...,ak∈Ak

k∏
i=1

nai .

Furthermore, define Multiset #k-SUM as (U, 1)-vector Multiset #k-SUM and M -multiplicity
#k-SUM as Multiset #k-SUM with the additional restriction that the multiplicity of each element
is limited, that is for all a ∈ A1 ∪ · · · ∪ Ak : na ≤ M holds. Lastly, #k-SUM is defined as 1-
Multiplicity #k-SUM and (U, d)-vector #k-SUM is (U, d)-vector Multiset #k-SUM where for all
a ∈ A1 ∪ · · · ∪Ak : na = 1 holds.

For the case of FOP3
Z we will also introduce the #All-ints version of the above problems, which

just asks to determine for each a1 ∈ A1 the number of witnesses.
The following proof will be similar to the proof of Lemma A.5 of Abboud et al. in [5].

Lemma 4.2 ((U, d)-vector Multiset #k-SUM ≤⌈k/2⌉ Multiset #k-SUM). If Multiset #k-SUM can
be solved in time T (n) then (U, d)-vector Multiset #k-SUM can be solved in time O(nd log(U) +
T (n)).

Proof. Let X := {−U, . . . , U}d be our universe, A1, . . . , Ak ⊆ X and t ∈ X. Shift all vector
entries to make them positive by adding U to them, accordingly shift the vector entries in t by kU .
Moreover, let B := 2kU + 1. We define b(x) :=

∑d−1
j=0 x[j]B

j . Now, construct multisets A
′
1, . . . , A

′
k

for i ∈ {1, . . . , k} as A
′
i = {b(a) : a ∈ Ai}, where for each a ∈ A

′
i, we set the multiplicity of

nb(a) := na. Meaning, we adopt the multiplicities of each transformed element from its multiplicity
in the original set. Moreover, set t′ := b(t).

Consider a solution (a1, . . . , ak) ∈ A1 × · · · × Ak such that
∑k

i=1 ai = t, then for each j ∈
{0, . . . , d− 1}, it holds that a1[j] + · · ·+ ak[j] = t[j]. As there is no overflow when adding, that is
for each a1[j] + · · ·+ ak[j] < B, we get

a1 + · · ·+ ak = t

⇐⇒
d−1∑
j=0

a1[j]B
j + · · ·+

d−1∑
j=0

ak[j]B
j =

d−1∑
j=0

t[j]Bj .

The reduction creates a Multiset #k-SUM instance with universe size k ·Bd = Θ(Ud), and runs in
time O(nd logU).

Next, we give a simple approach to solve Multiset #k-SUM when all multiplicities are compa-
rably small.

Lemma 4.3 (M -multiplicity #k-SUM≤⌈k/2⌉ #k-SUM). If #k-SUM can be solved in time T (n)

then M -multiplicity #k-SUM can be solved in time Õ(T (nMk−1)).

Proof. Let A1, . . . , Ak ⊆ {U, . . . ,−U}. We create zero indexed vectors of length k2 + 1. Let
B := 3M . For clarity, the first entry will be denoted by v[0], and the other entries we denote
by two-dimensional coordinates u,w ∈ {1, . . . , k}, where v[(u,w)] := v[k(u − 1) + w]. For each
i ∈ {1, . . . , k},a ∈ Ai, j1, . . . ji−1, ji+1, . . . , jk−1 ∈ {1, . . . ,M} and ji ∈ {1, . . . , na}, we add the

15

following vectors with v[0] = a to the newly created set Âi:

v(a, j1, . . . , jk)[u,w] =


0 if u = w,

ju if u = i and u ̸= w,

B − ju if w = i and u ̸= w,

0 else.

For i ∈ {1, . . . , k} and a new constructed vector v(a, j1, . . . , jk), we denote ind(v(a, j1, . . . , jk)) := ji.
There are O(n · Mk−1) many vectors in Â1, . . . , Âk. We set t̂ := (t, B, . . . , B). Consider now
witnesses (â1, . . . , âk) ∈ Â1 × . . . Âk such that â1 + · · ·+ âk = t̂. By construction, for this witness,
for each pair u,w ∈ {1, . . . , k}, we have ind(âu) = ind(âw), and moreover, for each i ∈ {1, . . . , k}
the dimensions (u− 1)i+ 1, . . . , (u− 1)i+ k lead to the fact that ind(â1) = · · · = ind(âk). Due to
how the ji are chosen, a witness (a1, . . . , ak) ∈ A1 × · · · ×Ak will correspond to

k∏
i=1

|{1, . . . ,M} ∩ {1, . . . , nai}| =
k∏
i=1

nai

many witnesses (â1, . . . , âk) ∈ Â1 × · · · × Âk. Finally, convert this (U, k2 + 1)-vector #k-SUM
instance into a #k-SUM problem, using Lemma A.5.

For later purposes, we will need the following version of the above lemma.

Observation 4.4. If #All-ints 3-SUM can be solved in time T (n) for an ϵ > 0, then we can solve
#All-ints M -multiplicity 3-SUM in time Õ(T (nM2)).

The same proof as the above can be performed, at the end it just remains to sum up for each
a the number of solutions for v(a, j1, j2, j3).

Lemma 4.5. For odd k ≥ 3, if there exists an algorithm for the #k-SUM problem running in time
O(n⌈k/2⌉−ϵ) for an ϵ > 0, then there exists an algorithm for the Multiset #k-SUM problem running
in time O(n⌈k/2⌉−ϵ

′
) for an ϵ′ > 0.

Proof. We proceed with a heavy-light approach. Assume there exists an O(n⌈k/2⌉−ϵ) algorithm
for the #k-SUM problem. Set c := (k − 1)(⌈k/2⌉). Firstly, we count the number of solutions
(a1, . . . , ak) ∈ A1 × · · · × Ak, where na1 , . . . , nak ≤ nϵ/c using the reduction described in Lemma
4.3. This takes time

Õ
(
(n · (nϵ/c)k−1)⌈k/2⌉−ϵ

)
= Õ

(
n
1+ ϵ

⌈k/2⌉
)⌈k/2⌉−ϵ

= Õ

(
n
⌈k/2⌉−ϵ+ϵ− ϵ2

⌈k/2⌉

)
= O

(
n⌈k/2⌉−ϵ

′
)
,

where ϵ′ > 0. It remains to calculate the number of witnesses (a1, . . . , ak), where for at least one
i ∈ {1, . . . , k}, we have high-multiplicity, meaning nai > nϵ/c holds. Consider the case that a1 ∈ A1

is a high-multiplicity number (the case where ai ∈ Ai with i ̸= 1 is a high-multiplicity number is
analogous). For each high-multiplicity number a1 in A1 we do the following. Solve the (k−1)-SUM
instance with sets A2, . . . , Ak and target t− a1. There are at most n1−(ϵ/c) many high-multiplicity

16

numbers in A1, and solving the (k − 1)-SUM instance takes time O(n(k−1)/2). We get a total
runtime of

n1−
ϵ
c · Õ(n(k−1)/2) = Õ(n1−(ϵ/c)+(k−1)/2)

= Õ(n(k+1)/2−(ϵ/c))

= O(n⌈k/2⌉−ϵ
′′
),

where ϵ′′ > 0, which concludes the proof.

We can alter the above proof a bit to get the following result.

Observation 4.6. If #All-ints 3-SUM can be solved in time O(n2−ϵ) for an ϵ > 0, then we can
solve #All-ints 3-SUM on multisets in time O(n2−ϵ

′
) for an ϵ′ > 0.

Proof. For the proof, we basically proceed like the above. We count for each a1 ∈ A1 the
number of low-multiplicity solutions (multiplicity at most n

ϵ
4) using the Observation 4.4 in time

Õ

((
n · (n

ϵ
4)
)2−ϵ)

= Õ

((
n1+

ϵ
4

)2−ϵ)
= O(n2−ϵ

′
), where ϵ′ > 0. Now, we proceed with a brute-

force argument. For each a1 ∈ A1, which is high-multiplicity(multiplicity higher than n
ϵ
4) we create

a 2-SUM instance with target t − a1. The witnesses can be counted by a naive algorithm in time
Õ(n). With a simple 2-SUM algorithm, we can count the number of high-multiplicity solutions in
time O(n1−

ϵ
4) · Õ(n) = O(n2−ϵ

′′
), where ϵ′′ > 0.

Theorem 1.2. Let k ≥ 3 be odd. If there is ϵ > 0 such that we can count the number of witnesses
for k-SUM in time O(n⌈k/2⌉−ϵ), then for all problem P in FOPZ(∃k), there is some ϵ′ > 0 such that
we can count the number of witnesses for P in time O(n⌈k/2⌉−ϵ

′
).

Proof. Consider a general FOPZ(∃k) formula. After substituting the free variables, we can assume
the formula to be of the following form, by the same arguments used in the proof of the Theorem 1.1.

∃a1 ∈ A1 . . . ∃ak ∈ Ak :

 H∨
h=1

m∧
j=1

k∑
i=1

cTh,j,iai ≥ Sh,j

 ,

where d1, . . . , dk ∈ N>0, A1 ⊆ {−U, . . . , U}d1 , . . . , Ak ⊆ {−U, . . . , U}dk and for h ∈ {1, . . . ,H}, j ∈
{1, . . . ,m}, i ∈ {1, . . . , k}, we have Sh,j ∈ Z, ch,j,i ∈ {−U, . . . , U}di .

We first consider the special case consisting of the a single conjunction (H = 1), that is

ϕ =
m∧
j=1

k∑
i=1

cTj,iai ≥ Sj .

By #(ϕ), we denote the number of witnesses that satisfy the above formula ϕ. Formally, we have

#(ϕ) := #

(a1, . . . , ak) ∈ A1 × · · · ×Ak :
m∧
j=1

k∑
i=1

cTj,iai ≥ Sj

 .

By Lemma 3.1, and Observation A.15, we get that # (ϕ) can be computed by∑
ℓ∈{1,...,⌈log2(U)⌉},

b∈{1,...,k}

#{(a1, . . . , ak) : fϕ,l1 (a1) + · · ·+ fϕ,lk (ak) = gϕ,l,W (S1, . . . , Sm), a1 ∈ A1, . . . , ak ∈ Ak}

17

where #{(a1, . . . , ak) ∈ A1 × · · · ×Ak : fϕ,l1 (a1) + · · ·+ fϕ,lk (ak) = gϕ,l,W (S1, . . . , Sm)} is a (M,m)-
vector Multiset #k-SUM instance, where M comes from the application of Lemma 3.1. We go
through the following chain of transformations to reduce this counting problem to a #k-SUM
instance. Firstly, the (M,m)-vector Multiset #k-SUM instance will be transformed into a Multiset
#k-SUM instance using Lemma 4.2. Afterwards, we transform the Multiset #k-SUM instances
into #k-SUM instances using Lemma 4.5. These yield a sub-n⌈k/2⌉ fine-grained reduction that
preserve witnesses. This concludes the fine-grained reduction to #k-SUM for the case of a single
conjunction.

We turn back to the general formula, which we can now count the witnesses for by a simple
application of the inclusion-exclusion principle. Specifically, by inclusion-exclusion, we have

#


H∨
h=1

m∧
j=1

k∑
i=1

cTh,j,iai ≥ Sh,j︸ ︷︷ ︸
ψh

 =

H∑
l=1

(−1)l+1
∑

U⊆{1,...,H},
|U |=l

#

(∧
h∈U

ψh

)
.

Notice that #
(∧

h∈U ψh
)
adheres to the special case above and can thus be reduced to #k-SUM.

Finally, evaluating the above expression can be done by O(2H) many calls to the reduction to
#k-SUM. This concludes the proof, as in our setting H = O(1) holds.

By combining the subquadratic equivalence between 3-SUM and #3-SUM (see Theorem A.10
due to Chan et al. [29] in the Appendix) and the above, we get the result:

Corollary 1.3. For all problems P in FOPZ(∃3), there is some ϵP > 0 such that we can count the
number of witnesses for P in randomized time O(n2−ϵP) if and only if there is some ϵ′ > 0 such
that 3-SUM can be solved in randomized time O(n2−ϵ

′
).

The above proof can also be adapted for the special case k = 3 to count for each a1 ∈ A1 the
number of witnesses involving a1, by plugging in the appropriate All-ints versions. Together with
the equivalence between #All-ints 3-SUM and 3-SUM of Chan et al. [29], we get

Corollary 4.7. For all problems P in FOPZ(∃3), we are able to count for each a1 ∈ A1 the number
of witnesses involving a1 in randomized time O(n2−ϵ) for an ϵ > 0, if 3-SUM can be solved in
randomized time O(n2−ϵ

′
) for an ϵ′ > 0.

5 Completeness Theorems for General Quantifier Structures

As Theorem 1.1 establishes 3-SUM as the complete problem for the class FOPZ(∃∃∃), we would
like to similarly explore complete problems for other quantifier structures. Let us recall our main
geometric problems.

Definition 5.1 (Verification of d-dimensional Pareto Sum). Given sets A,B,C ⊆ Zd. Does the
set C dominate A+B, that is does for all a ∈ A, b ∈ B exist a c ∈ C, with c ≥ a+ b ?

It is easy to see that Verification of d-dimensional Pareto Sum is in FOPZ(∀∀∃).

Definition 5.2 (Hausdorff Distance under n Translations). Given sets A,B,C ⊆ Zd with at most
n elements and a γ ∈ N, the Hausdorff distance under n Translations problem asks whether the
following holds:

δ
T (A)
−→
H

(B,C) := min
τ∈A

δ−→
H
(B,C + {τ}) = min

τ∈A
max
b∈B

min
c∈C
∥b− (c+ τ)∥∞ ≤ γ.

18

We show the following result firstly, which allows us to assume without loss of generality a
certain normal form.

Lemma 5.3. Let Q1, Q2 ∈ {∃,∀}. A general FOPZ(Q1Q2∃) formula, with input set A1 ⊆ Zd1 , A2 ⊆
Zd2 , A3 ⊆ Zd3, where |A1| = |A2| = |A3| = n, can be reduced to the FOPZ(Q1Q2∃) formula

Q1a
′
1 ∈ A′

1Q2a
′
2 ∈ A′

2∃a′3 ∈ A′
3 : a

′
1 + a′2 ≤ a′3

in time O(n), where |A′
1| = |A′

2| = n and |A′
3| = O(n).

Proof. After substituting the free variables, by the same arguments used in the proof of the Theorem
1.1, we can rewrite the general FOPZ(Q1Q2∃) formula into the form:

Q1a1 ∈ A1Q2a2 ∈ A2∃a3 ∈ A3 :

H∨
i=1

m∧
j=1

αTi,ja1 + βTi,ja2 ≤ γTi,ja3 + Si,j︸ ︷︷ ︸
φ

.

We set

A′
1 :=

{(
αT1,1a1, . . . , α

T
1,ma1, . . . , α

T
H,1a1, . . . , α

T
H,ma1

)
: a1 ∈ A1

}
,

A′
2 :=

{(
βT1,1a2, . . . , β

T
1,ma2, . . . , β

T
H,1a2, . . . , β

T
H,ma2

)
: a2 ∈ A2

}
.

The set A′
3 will be the following set of vectors, which intuitively will allow choices for each disjunct{(

M, . . . ,M, . . . ,M, γTi,1a3 + Si,1, . . . , γ
T
i,ma3 + Si,m,M, . . . ,M

)
: i ∈ {1, . . . ,H}, a3 ∈ A3

}
.

For the newly built sets, we have A′
1 ⊆ ZH·m, A′

2 ⊆ ZH·m, A′
3 ⊆ ZH·m, and |A′

1| = |A′
2| = n,

whereas |A′
3| = H ·n. For fixed (a′1, a

′
2) ∈ A′

1×A′
2 it is now easy to see that there exists an a′3 ∈ A′

3

such that a′1 + a′2 ≤ a′3 if and only if φ holds. We can assume M to be a sufficiently large number
that upper bounds any possible sum e.g M = 2 ·max{∥a′1∥1 + ∥a′2∥1 : a1 ∈ A′

1, a
′
2 ∈ A′

2}.

The above lemma immediately gives us complete syntactic problems for our classes. It remains
to establish connections between the different quantifier structure classes, and explore natural
variants of the syntactic problems in the following.

The syntactic complete problem for the class FOPZ(∃∀∃) turns out to be equivalent to Hausdorff
Distance under n Translations. We obtain:

Lemma 5.4 (Hausdorff Distance under n Translations is complete for FOPZ(∃∀∃)). There is a func-
tion ϵ(d) > 0 such that Hausdorff Distance under n Translations can be solved in time O(n2−ϵ(d))
if and only if all problems P in FOPZ(∃∀∃) can be solved in time O(n2−ϵP) for an ϵP > 0.

Proof. Let ϕ := ∃a ∈ A∀b ∈ B∃c ∈ C : φ a formula in FOPZ(∃∀∃). By Lemma 5.3, we can
rewrite ϕ equivalently into the form ϕ′ := ∃a′ ∈ A′∀b′ ∈ B′∃c′ ∈ C ′ : a′ + b′ ≤ c′. Let M :=
2 ·max{∥a′∥1 + ∥b′∥1 + ∥c′∥1 : a′ ∈ A′, b′ ∈ B′, c′ ∈ C ′}, be a sufficiently large number. Construct
Â = −A′ + {(M, . . . ,M)T }, B̂ = B′ + {(3M, . . . , 3M)T } and Ĉ = C ′ + {(M, . . . ,M)T }. Thus we
have

∃a′ ∈ A′∀b′ ∈ B′∃c′ ∈ C ′ : a′ + b′ ≤ c′ ⇐⇒ ∃a′ ∈ A′∀b′ ∈ B′∃c′ ∈ C ′ :
d∧
i=1

a[i] + b[i]− c[i] ≤ 0

⇐⇒ ∃a′ ∈ A′∀b′ ∈ B′∃c′ ∈ C ′ :

d∧
i=1

b[i]− (c[i]− a[i]) ≤ 0.

19

Then, equivalently

∃a′ ∈ A′∀b′ ∈ B′∃c′ ∈ C ′ :
d∧
i=1

(b[i] + 3M)− ((c[i] +M)− (a[i]−M)) ≤M ⇐⇒

min
â∈Â

max
b̂∈B̂

min
ĉ∈Ĉ

∥∥∥b̂− (ĉ+ â)
∥∥∥
∞
≤M.

The proof of the membership of Hausdorff Distance under n Translations in FOPZ(∃∀∃) can be
found in Example B.6.

Similarly, the Verification of Pareto Sum problem is complete for the class FOPZ(∀∀∃).

Lemma 5.5 (Verification of Pareto Sum is complete for FOPZ(∀∀∃)). Verification of Pareto Sum
can be solved in time O(n2−ϵ) for an ϵ > 0 if and only if all problems P in FOPZ(∀∀∃) can be solved
in time O(n2−ϵ

′
) for an ϵ′ > 0.

Proof. Let ϕ := ∀a ∈ A∀b ∈ B∃c ∈ C : φ a formula in FOPZ(∀∀∃) after replacing the free variables.
By Lemma 5.3, we can rewrite ϕ equivalently into the form ϕ′ := ∀a′ ∈ A′∀b′ ∈ B′∃c′ ∈ C ′ : a′+b′ ≤
c′. Clearly, Verification of Pareto Sum is in the class FOPZ(∀∀∃).

5.1 FOPZ(∀∃∃)→ FOPZ(∃∃∃)

We continue with handling the class FOPZ(∀∃∃). By simply making use of Corollary 4.7, one
can easily prove that 3-SUM is hard for the class FOPZ(∀∃∃). In the following, we will show a
deterministic proof, as Corollary 4.7 makes use of the subquadratic equivalence between 3-SUM
and #All-ints 3-SUM, which relies on randomization techniques21.

Lemma 2.2. If 3-SUM can be solved in time O(n2−ϵ) for an ϵ > 0, then all problems P of
FOPZ(∀∃∃) can be solved in time O(n2−ϵP) for an ϵP > 0.

Proof. We devise Algorithm 1 to show that all problems in FOPZ(∀∃∃) can be reduced to 3-SUM
in subquadratic time.

Firstly notice that

∀a1 ∈ A1∃a2 ∈ A2∃a3 ∈ A3 :

H∨
h=1

m∧
i=1

3∑
j=1

cTh,i,jaj ≥ Sh,i

holds, if by the commutativity of disjunction and existential quantifier the following holds:

∀a1 ∈ A1

H∨
h=1

∃a2 ∈ A2∃a3 ∈ A3 :
m∧
i=1

3∑
j=1

cTh,i,jaj ≥ Sh,i

For each h ∈ {1, . . . ,H}, we aim to retrieve the a1 ∈ A1, which satisfy

∃a2 ∈ A2∃a3 ∈ A3 :
m∧
i=1

3∑
j=1

cTh,i,jaj ≥ Sh,i.

21The equivalence between 3-SUM and #3-SUM has been recently made deterministic after the published version
of this paper by Fischer, Jin and Xu [40].

20

Algorithm 1 FOPZ(∀∃∃) ≤2 3-SUM.

Input: Sets A1, A2, A3 and a linear arithmetic formula (with already substituted free variables)

ϕ =

H∨
h=1

m∧
i=1

k∑
j=1

cTh,i,jaj ≥ Sh,i︸ ︷︷ ︸
=:ψ

.

Output: Whether ∀a1 ∈ A1, ∃a2 ∈ A2, ∃a3 ∈ A3 : ϕ holds.
1: S ← {}
2: for h ∈ {1, . . . ,H} do
3: for ℓ = (l1, . . . , lm) ∈ {1, . . . , log2(M)}k,W = (W1, . . . ,Wm) ∈ {1, 2, 3}m do

4: A′
1 ← f ℓ,ψ1 (A1), A

′
2 ← f ℓ,ψ2 (A2), A

′
3 ← f ℓ,ψ3 (A3), t ← gW,ℓ,ψ(S1, . . . , Sm) using Lemma

3.1.
5: Convert the above vector 3-SUM instance into a 3-SUM instance, with sets A′′

1, A
′′
2, A

′′
3

using Lemma A.5.
6: Call All-ints 3-SUM on A′′

1, A
′′
2, A

′′
3.

7: For each transformed version of a1 ∈ A1, which we call a′′1 ∈ A′′
1, that is part of a witness

(a′′1, a
′′
2, a

′′
3), add the original a1 ∈ A1 to the set S.

8: end for
9: end for

10: return

{
Yes if S = A1,

No else.

By Lemma 3.1 the above holds if and only if there exist ℓ = (l1, . . . , lm) ∈ {1, . . . , log2(M)}3,W =
(W1, . . . ,Wm) ∈ {1, 2, 3}m such that

f ℓ,ψ1 (a1) + f ℓ,ψ2 (a2) + f ℓ,ψ3 (a3) = gW,ℓ,ψ(Sh,1, . . . , Sh,m).

Thus, it remains to find all a1 ∈ A1 that satisfy the above equation. Clearly these are all the
a′1 ∈ A′

1, which satisfy the vector 3-SUM problem instantiated by the sets A′
1, A

′
2, A

′
3 and t.

We transform the given vector 3-SUM instance, into a 3-SUM instance using Lemma A.5 in
time Õ(n).

By a call to All-ints 3-SUM (which is subquadratic equivalent to 3-SUM [61]), we can retrieve
all solutions of this 3-SUM instance.

We remark, that the last transformation to 3-SUM in the algorithm preserve the witnesses, that
is (a1, a2, a3) is a witness in A1×A2×A3 if and only if (a′′1, a

′′
2, a

′′
3) is a witness in A′′

1×A′′
2×A′′

3.

In a more general light, the above proof also allows us to determine for each a ∈ A1 whether it
is involved in a solution.

5.2 FOPZ(∃∃∃)→ FOPZ(∀∀∃)

We explore the connection between the problem Additive Sumset Approximation, which is a mem-
ber of the class FOPZ(∀∀∃), and the 3-SUM problem. The following theorem will play a key role
to enable the discovery of the relationship between 3-SUM and other quantifier structures.

21

Theorem 2.3. Consider the Additive Sumset Approximation problem of deciding, given A,B,C ⊆
Z, t ∈ Z, whether

A+B ⊆ C + {0, . . . , t}.

This problem is

• solvable in time O(n2−δ) with δ > 0, whenever t = O(n1−ϵ) for any ϵ > 0,

• not solvable in time O(n2−ϵ), whenever t = Ω(n) assuming the Strong convolutional 3-SUM
hypothesis.

Furthermore, subquadratic hardness holds under the standard 3-SUM Hypothesis if no restriction
on t is made.

Proof. 1. For the first part consider t = O(n1−ϵ), for an ϵ > 0. We make all numbers positive by
adding a large constantM to our sets, thus let A′ := A+M, B′ := B+M and C ′ := C+2M .
Let Ĉ := C ′ + [t]. The set Ĉ, can be computed naively in time O(n · n1−ϵ) = O(n2−ϵ).
To compute the sumset A′ + B′, we perform a boolean convolution of the characteristic
vectors describing A′ and B′ using the deterministic output-sensitive convolution algorithm
of Bringmann et al. [20] (see Theorem A.4 in the Appendix). Specifically, we run the output-
sensitive Õ(t)-time algorithm for at most the number of steps required for outputs of size
t = #Ĉ. Thus, it either returns A′ + B′ correctly, which we then compare against Ĉ, or we
stop it with the result that #(A′ +B′) exceeds #Ĉ, and the answer is trivially NO. In both
cases, we use time Õ(t) = Õ(n2−ϵ).

2. The sumset expression A + B ⊆ C + [t] is equivalent to ∀a ∈ A∀b ∈ B∃c : a + b ∈ {c} + [t].
We reduce in the way such that an original 3-SUM is a YES instance iff the produced sumset
expression is a NO instance. Thus, a reduction from 3-SUM needs to somehow certify that
a+ b cannot be a solution.

To show our reduction, we reduce from the more structured convolutional 3-SUM problem,
which is subquadratic equivalent to 3-SUM. Consider sequences A,B,C, we ask if ∃i, j, k ∈
[n−1] : a[i]+ b[j] = c[k]∧ i+ j = k. We construct the following sets where W := 100U , where
U denotes the maximal number occurring in the sets: A′ = {a[i] + iW : i ∈ [n− 1]} , B′ =
{b[i] + iW : i ∈ [n− 1]} , C ′ = {c[i] + iW : i ∈ [n− 1]} . Hence, we get that for a′ ∈ A′, b′ ∈
B′, there are i, j ∈ [n− 1], with i+ j ∈ [n− 1], such that

a′ + b′ = a[i] + iW + b[j] + jW

= a[i] + b[j] + (i+ j)W ∈ {(i+ j)W, . . . , (i+ j)W + 2U}.

Let c′ = c[i + j] + (i + j)W . By the above property (a′, b′) is not a witness if and only if
a′+b′ ̸= c′. Put differently, a′+b′ is in the ”complement” set {(i+j)W, . . . , (i+j)W+2U}\{c′}.
Let t := 2U . Due to adjacent ”complement” sets being at least 97U apart, we equivalently
have (a′, b′) is not a witness if and only if a′+b′ ∈ {c′−1−t, . . . , c′−1}∪{c′+1, . . . , c′+t+1}.
We can construct the above set for a c′ ∈ C ′ using two help points c′1 := c′−1− t, c′2 := c′+1.
Let Ĉ := {c′1 : c′ ∈ C ′}∪{c′2 : c′ ∈ C ′}. Thus, Ĉ+[t] is the union of all the sets Ic′ for c

′ ∈ C ′,
and A′ +B′ ⊆ Ĉ + [t] is a NO Additive Sumset approximation instance if and only if A,B,C
is a YES convolutional 3-SUM instance.

Note that the above reduction transform any given convolutional 3-SUM instance with uni-
verse U = Θ(n) to an equivalent instance of the problem with t = 2U = Θ(n). Thus, any
algorithm deciding the problem within time O(n2−ϵ) for an ϵ > 0 refutes the strong 3-SUM

22

Hypothesis. Furthermore, by subquadratic equivalence of 3-SUM and convolutional 3−SUM
without any restriction on t in time O(n2−δ) for a δ > 0 would refute the 3-SUM Hypothesis.

Notice that the above problem is a member of the class FOPZ(∀∀∃). Formally, we can rewrite
the Additive Sumset Approximation problem as

∀a ∈ A∀b ∈ B∃c ∈ C : c ≤ a+ b ≤ c+ t.

The reduction from Additive Sumset Approximation to 3-SUM seems nontrivial on the first sight.
In Section 6 we will explore a tool, which will give us this reduction.

5.3 Completeness results for the class FOPkZ

We turn to combining the above insights to establish (a pair of) complete problems for the class
FOPZ.

Lemma 2.4. There is a function ϵ(d) > 0 such that the Verification of Pareto Sum problem can
be solved in time O(n2−ϵ(d)) if and only if all problems P in the classes

• FOPZ(Q1 . . . Qk−3∃∃∃),FOPZ(Q1 . . . Qk−3∀∀∀),

• FOPZ(Q1 . . . Qk−3∀∃∃),FOPZ(Q1 . . . Qk−3∃∀∀),

• FOPZ(Q1 . . . Qk−3∀∀∃),FOPZ(Q1 . . . Qk−3∃∃∀),

where Q1, . . . Qk−3 ∈ {∃, ∀} and k ≥ 3, can be solved in time O(nk−1−ϵP) for an ϵP > 0.

Proof. We firstly bruteforce the first k − 3 quantifiers. It then remains to solve a formula ϕ
in FOPZ(∃∃∃), FOPZ(∀∃∃) or FOPZ(∀∀∃). If the formula ϕ is in FOPZ(∀∀∃) then Lemma 5.5
concludes the proof. If the formula ϕ is in FOPZ(∃∃∃) or in FOPZ(∀∃∃), we make use of Theorem
1.1 or Lemma 2.2 to reduce it to a 3-SUM instance. By Theorem 2.3, we can reduce this 3-SUM
instance to an instance of Additive Sumset Approximation. Finally, we conclude by the remark
that Additive Sumset Approximation is in FOPZ(∀∀∃) and conclude with an application of Lemma
5.5.

Lemma 2.5. There is a function ϵ(d) > 0 such that the Hausdorff Distance under n Translations
problem can be solved in time O(n2−ϵ(d)) if and only if all problems P in the classes

• FOPZ(Q1 . . . Qk−3∃∀∃),FOPZ(Q1 . . . Qk−3∀∃∀),

where Q1, . . . Qk−3 ∈ {∃, ∀} and k ≥ 3, can be solved in time O(nk−1−ϵP) for an ϵP > 0.

Proof. We firstly bruteforce the first k−3 quantifiers. By a potential negation argument, it remains
to solve a formula ϕ in FOPZ(∃∀∀). We conclude with an application of Lemma 5.4.

We can finally turn our attention to a completeness Theorem for the whole class FOPkZ.

Theorem 1.4. There is a function ϵ(d) > 0 such that both of the following problems can be solved
in time O(n2−ϵ(d))

• Pareto Sum Verification,

• Hausdorff distance under n Translations,

23

if and only if for each problem P in FOPkZ with k ≥ 3 there exists an ϵP > 0 such that P can be
solved in time O(nk−1−ϵP).

Proof. The proof is simply an application of Lemma 2.5 or Lemma 2.4, depending on the quantifier
structure of the problem P .

Essentially, these two problems capture the complexity of the class FOP3
Z and can be seen as

the most important problems in FOPkZ.

6 The 3-SUM problem is complete for FOPZ formulas with In-
equality Dimension at most 3

In this section, we show that 3-SUM captures an interesting subclass of FOPZ formulas with ar-
bitrary quantifier structure, namely the formulas of sufficiently small inequality dimension. Let us
recall the notion of inequality dimension.

Definition 6.1 (Inequality Dimension of a Formula). Let ϕ = Q1x1 ∈ A1, . . . , Qkxk ∈ Ak : ψ be a
FOPZ formula with Ai ⊆ Zdi.

The inequality dimension of ϕ is the smallest number s such that there exists a Boolean func-
tion ψ′ : {0, 1}s → {0, 1} and (strict or non-strict) linear inequalities L1, . . . , Ls in the variables
{xi[j] : i ∈ {1, . . . , k}, j ∈ {1, . . . , di}} and the free variables such that ψ(x1, . . . , xk) is equivalent
to ψ′(L1, . . . , Ls).

In the following, we look at the class of problems FOPkZ with the restriction of inequality
dimension at most 3. We use the following naming convention for boxes.

Definition 6.2. A d-box in Rd is the cartesian product of d proper intervals s1 × · · · × sd, where
si is an open, closed or half-open interval. We call a cartesian product of only closed intervals a
closed box and a cartesian product of only open intervals an open box.

Given a set of n closed boxes in a set R of 2d dimensions, and d-dimensional points a ∈ A, b ∈ B,
we can check in FOPZ(∃∃∃) whether a+ b lies in one of the boxes as follows:

∃a ∈ A∃b ∈ B∃r ∈ R :

d∧
i=1

r[i] ≤ a[i] + b[i] ∧ a[i] + b[i] ≤ r[d+ i].

In fact, we are not limited to closed boxes, if a box is open or half open in a dimension, one can
adjust the inequalities in this dimension appropriately.

In order to prove our main theorem in this section, we need to partition the union of n unit
cubes in R3 into pairwise interior- and exterior-disjoint boxes. While Chew et al. [31] studied
such a decomposition of unit cubes with the requirement of only interior-disjoint boxes, we need
an extension of their result to guarantee disjoint exteriors.

Lemma 6.3 (Disjoint decomposition of the union of cubes in R3). Let C be a set of n axis-aligned
congruent cubes in R3. The union of these cubes, can be decomposed into O(n) boxes whose interiors
and exteriors are disjoint in time O(n log2 n).

For a proof, see Section E in the Appendix.

Theorem 6.4. There is an algorithm deciding 3-SUM in randomized time O(n2−ϵ) for an ϵ > 0 if
and only if for each problem P in the classes FOPZ(∀∀∃) and FOPZ(∃∀∃) of inequality dimension
at most 3 there exists an ϵ′ > 0 such that we can solve P in randomized time O(n2−ϵ

′
).

24

Proof. For the first direction due to Theorem 2.3, we can reduce 3-SUM to an instance of Additive
Sumset Approximation,

∀a ∈ A∀b ∈ B∃c ∈ C : c ≤ a+ b ∧ a+ b ≤ c+ t,

which has inequality dimension 2. Let us continue with the other direction. Let ϕ := Q1a ∈
A∀b ∈ B∃c ∈ C : φ, where Q1 ∈ {∃,∀} and φ is a quantifier free linear arithmetic formula with
inequality dimension 3. Let L1 := αT1 a + βT1 b ≤ γT1 c + S1, L2 := αT2 a + βT2 b ≤ γT2 c + S2 and
L3 := αT3 a+ βT3 b ≤ γT3 c+S3 after replacing the free variables. Assume that the formula φ is given
in DNF, thus each co-clause has at most 3 atoms, chosen from L1, L2, L3 and their negations. Let

A′ :=


 αT1 a

αT2 a
αT3 a

 : a ∈ A

 , B′ :=


 βT1 b

βT2 b
βT3 b

 : b ∈ B

 , C ′ :=


 γT1 c+ S1

γT2 c+ S2
γT3 c+ S3

 : c ∈ C


Thus each co-clause consists of conjunctions of a subset of the following set

{a′[0] + b′[0] ≤ c′[0], a′[0] + b′[0] ≥ c′[0] + 1, a′[1] + b′[1] ≤ c′[1],
a′[1] + b′[1] ≥ c′[1] + 1, a′[2] + b′[2] ≤ c′[2], a′[2] + b′[2] ≥ c′[2] + 1}.

Let the co-clauses of φ be V1, . . . , Vh. Thus, we aim to decide a formula of the form:

Q1a
′ ∈ A′∀b′ ∈ B′∃c′ ∈ C ′ :

h∨
i=1

Vi (5)

For each co-clause Vi, i ∈ {1, . . . , h} it holds that Vi is of the form∧
k∈V Ki

Lk ∧
∧
j∈V Ji

¬Lj ,

for some V J
i , V

K
i ⊆ {1, 2, 3} and V J

i ∩ V K
i = ∅.

Let us consider for each fixed c′ ∈ C ′ the following possibly empty orthant in R3.

S(Vi, c′) := {x ∈ R3 :
∧

k∈V Ki

x[k] ≤ c′[k] ∧
∧
j∈V Ji

x[j] ≥ c′[j] + 1}.

By construction, it is immediate that for a fixed c′ and (a′, b′) ∈ A′ × B′ that (a′, b′, c′) fulfill
the co-clause Vi if and only if a′ + b′ ∈ S(Vi, c′). Thus, equivalently to Equation (5), we ask

Q1a
′ ∈ A′∀b′ ∈ B′∃c′ ∈ C ′ :

h∨
i=1

(
a′ + b′ ∈ S(Vi, c′)

)
.

Having a closer look,
∨h
i=1 (a

′ + b′ ∈ S(Vi, c′)) is true if and only if a′+ b′ lies in one of the orthants
S(Vi, c

′).
We argue that we may represent the orthant S(Vi, c′) as an appropriately chosen cube in R3.

To this end, let M := 2 ·max{∥a∥1 + ∥b∥1 + ∥c∥1 : a′ ∈ A′, b′ ∈ B′, c′ ∈ C ′} be a sufficiently large
number. We can interpret S(Vi, c′) as a cube of the type Ci,c′ = [m0,m

′
0] × [m1,m

′
1] × [m2,m

′
2],

where for u ∈ {0, 1, 2}, we define:

mu :=


−M u ̸∈ V K

i , u ̸∈ V J
i ,

−2M + c[u] u ∈ V K
i ,

c[u] + 1 u ∈ V J
i ,

m′
u :=


M u ̸∈ V K

i , u ̸∈ V J
i ,

c[u] u ∈ V K
i ,

2M + c[u] + 1 u ∈ V J
i .

25

The cubes are axis-aligned and have side length 2M . Due to the large size of the cube we get for
fixed c′ ∈ C ′ that a′ + b′ ∈ S(Vi, c′) if and only if a′ + b′ lies inside the cube Ci,c′ .

By Lemma 6.3, we can decompose the collection of cubes Ci,c′ for i ∈ {1, . . . ,H}, c′ ∈ C ′ into
l = O(n) disjoint boxes R := {R1, . . . , Rl} in time O(n log2 n). Let us now go through a case
distinction based on the first quantifier.

• If Q1 = ∀, equivalent to ϕ we ask

∀a′ ∈ A′∀b′ ∈ B′∃i ∈ {1, . . . , l} : a′ + b′ lies in Ri.

By replacing each i ∈ {1, . . . , l} by a 6-tuple denoting the dimensions of the box Ri, we can
reduce counting the number of (a′, b′, Ri) with a

′+b′ ∈ Ri to 3-SUM using Corollary 1.3. Due
to the disjointness of the boxes Ri, we know that no (a′, b′) can be in different boxes Ri, Ri′

with i ̸= i′.

Thus, we can decide our original question by checking whether the number of such witnesses
equals |A′| · |B′|, concluding the fine-grained reduction to 3-SUM.

• Assume now that Q1 = ∃. Thus, equivalently to ϕ, we ask.

∃a′ ∈ A′∀b′ ∈ B′∃i ∈ {1, . . . , l} : a′ + b′ lies in Ri.

We can now make use of Corollary 4.7. Count for each a′ ∈ A′ the number of witnesses
(a′, b′, Ri) with a

′ + b′ ∈ R′. We claim that it remains to check whether there is some a′ that
is involved in |B′| witnesses. To see this, note that due to the disjointness of the Ri’s, for any
a′ ∈ A′ we have that the number of (b′, Ri) with a

′+ b′ ∈ Ri is equal to the number of b′ such
that there exists Ri with a

′ + b′ ∈ Ri. Again, the desired reduction to 3-SUM follows.

We remark that, by [15], we know that the complexity of the union of orthants in Rd has worst
case complexity O(n⌊d/2⌋). Thus, the above proof does not seem directly generalizable for higher
inequality dimensions.

Notice that the decomposition into disjoint boxes, was performed to get a disjointness property.
Problems with inherent, disjointness such as problems with an inbuilt convolution constraint can
be directly reduced to 3-SUM regardless of the inequality dimension.

Theorem 1.5. There is an algorithm deciding 3-SUM in randomized time O(n2−ϵ) for an ϵ > 0,
if and only if for each problem P in FOPkZ with k ≥ 3 and inequality dimension at most 3, there
exists some ϵ′ > 0 such that we can solve P in randomized time O(nk−1−ϵ′).

Proof. We apply a bruteforce search for the first k−3 quantifiers. Thus it remains to solve a FOP3
Z

formula. By combining Theorem 6.4, Theorem 1.1 and Lemma 2.2 if 3-SUM admits a O(n2−ϵ)
time algorithm for an ϵ > 0, then so does every possible FOPkZ formula with inequality dimension
3. Concluding, this gives us an O(nk−1−ϵ′) time algorithm.

The above theorem gives us immediate reductions to 3-SUM for many seemingly unrelated
problem of different quantifier structure and semantic.

For instance, as a direct application of the above theorem we can conclude the equivalence of
the Additive Sumset Approximation problem to 3-SUM, together with Theorem 2.3.

Lemma 6.5 (Additive Sumset Approximation ≤2 3-SUM). If the 3-SUM problem can be solved
in (randomized) time O(n2−ϵ) for an ϵ > 0 then Additive Sumset Approximation problem can be
solved in randomized time O(n2−ϵ

′
) for an ϵ′ > 0.

26

Proof. Notice that Additive Sumset Approximation can be rewritten in inequality dimension 2 as
∀a ∈ A∀b ∈ B∃c ∈ C : c ≤ a+ b ∧ a+ b ≤ c+ t. Thus, we conclude by an application of Theorem
1.5.

7 Applications

In this section, we introduce applications of our results. In general, by usage of Theorem 1.1, we get
surprisingly simple reductions to the k-SUM problem. While the first two applications can be shown
simply by an ad-hoc argument, we make use of our completeness theorems to showcase elegant and
simple proofs. Let us see as a first application the following lower bound, which corresponds to a
known implicit result in fine-grained complexity theory.

7.1 A lower bound for 4-SUM

As a perhaps surprisingly simple application of Theorem 1.1, we obtain a deterministic proof of the
implicit conditional lower bound for 4-SUM from the 3-uniform hyperclique problem.

Theorem 1.6. If there is some ϵ > 0 such that 4-SUM can be solved in time O(n
4
3
−ϵ), then the

3-uniform hyperclique hypothesis fails.

Proof. We firstly model the 3-uniform 4 hyperclique problem as a problem in the class FOPZ(∃4).
Assume the graph to be 4-partite, that is V = V1∪̇V2∪̇V3∪̇V4.

• Let E1 ⊆ N3 be the set of edges connecting V1, V2, V3 with edges of the form (v1a, v1b, v1c).

• Let E2 ⊆ N3 be the set of edges connecting V1, V2, V4 with edges of the form (v2a, v2b, v2d).

• Let E3 ⊆ N3 be the set of edges connecting V1, V3, V4 with edges of the form (v3a, v3c, v3d).

• Let E4 ⊆ N3 be the set of edges connecting V2, V3, V4 with edges of the form (v4b, v4c, v4d).

Now the formula will just be

∃e1 ∈ E1∃e2 ∈ E2∃e3 ∈ E3∃e4 ∈ E4 :e1[1] = e2[1] ∧ e2[1] = e3[1]

∧e1[2] = e2[2] ∧ e2[2] = e4[1]

∧e1[3] = e3[2] ∧ e3[2] = e4[2]

∧e2[3] = e3[3] ∧ e3[3] = e4[3].

For correctness, we remark that any witness e1 ∈ E1, . . . , e4 ∈ E4 for the above formula consistently
chooses the same vertex vi ∈ Vi for each i. Thus, {v1, . . . , v4} forms a 4-hyperclique, as all 4
connecting edges are present, as witnessed by e1, . . . , e4. Conversely, any 4-hyperclique {v1, . . . , v4}
with vi ∈ Vi yields the witness (v1, v2, v3) ∈ E1, (v1, v2, v4) ∈ E2, (v1, v3, v4) ∈ E3, and (v2, v3, v4) ∈
E4 in the above formula.

The sets E1, E2, E3, E4 will be of size O(n3), where n denotes the number of vertices. Assuming
there was an algorithm of runtime O(n4/3−ϵ) for the 4-SUM problem, then by Theorem 1.1, we
would have an algorithm for the class FOPZ(∃4) in time Õ(n4/3−ϵ). Finally, through the reduction
above, we get an algorithm in runtime Õ(n4−ϵ/3) for deciding the 3-uniform 4 hyperclique problem,
refuting the hypothesis.

27

7.2 A lower bound for 3-SUM

In similar spirit to Example B.7 in the Appendix, we can also give a direct lower bound for 3-SUM
from the Exact Triangle problem, which seeks to find a triangle in an undirected graph, whose
edge weights sum up to a certain value t. Formally, for an undirected graph G = (V,E) with a
cost function c : E → Z on the edges and a value t ∈ Z, we ask if there exist distinct vertices
v1, v2, v3 ∈ V such that c(v1, v2)+ c(v2, v3)+ c(v3, v1) = t holds.[60]. While the corresponding lower
bound is known in the literature, by a reduction from BMM [48, 61], we still can give a simple
direct proof.

Lemma 7.1. Let ϵ > 0, there is no algorithm solving 3-SUM in time O(n1.5−ϵ) if there is no
algorithm solving the Exact Triangle problem in time O(n3−ϵ

′
) for an ϵ′ > 0.

Proof. We show how to find an exact triangle in a directed graph. Let E be the set of edges in
a directed graph. Each edge has a unique id and consider α, ω to be functions that denote the
start and endpoint of an edge respectively, furthermore let c(e) denote the cost of an edge. Thus
E′ = {(eid, α(e), ω(e), c(e)) : e ∈ E}. To detect an exact triangle we can simply ask

∃e1 ∈ E∃e2 ∈ E∃e3 ∈ E :e1[0] ̸= e2[0] ∧ e2[0] ̸= e3[0] ∧ e1[0] ̸= e3[0]∧
e1[2] = e2[1] ∧ e2[2] = e3[1] ∧ e3[2] = e1[1]∧
e1[3] + e2[3] + e3[3] = t.

The set E is of at most quadratic size, thus an O(n1.5−ϵ) time algorithm with an ϵ > 0 would imply
an O(n3−ϵ

′
) time algorithm for exact triangle for some ϵ′ > 0.

7.3 A lower bound on the computation of Pareto Sums

In the following, we explore how the 3-SUM hardness of Verification of Pareto Sum translates to
a hardness result for the problem of computing Pareto Sums. Let us firstly justify the naming
of the Verification of Pareto Sum problem, by showing it to be subquadratic equivalent to the
more natural extended version of Verification of Pareto Sum. Throughout this section, we consider
dimensions d ≥ 2.

Definition 7.2 (Verification of Pareto Sum (Extended version)). Given sets A,B,C ⊆ Zd. Do the
following properties hold simultaneously:

• (Inclusion): C ⊆ A+B,

• (Dominance): C dominates A+B. More formally, for every a ∈ A, b ∈ B there exists c ∈ C
with c ≥ a+ b.

• (Minimality): There are no c, c′ ∈ C with c ̸= c′ and c ≤ c′.

We make use of the following lemma and its construction for the results in this section.

Lemma 7.3. Given sets A,B,C ⊆ Zd of size at most n, one can construct sets Ã, B̃, C̃ ⊆ Zd of size
Θ(n) in time Õ(n) such that (1) Ã, B̃, C̃ always satisfy the minimality and inclusion condition and
(2) Ã, B̃, C̃ fulfill the dominance condition if and only if A,B,C fulfill the dominance condition.

Proof. Let M be a sufficiently large number, that is M := 2 ·max{∥a∥1 + ∥b∥1 + ∥c∥1 : a ∈ A, b ∈
B, c ∈ C}. For ease of notation, we assume the dimension to be even, if the dimension is odd the

28

same construction where we omit the last dimension will work. We construct from the sets A,B,C
the following sets:

Ã : = A ∪


c+


2M
−2M

...
2M
−2M

 : c ∈ C


∪




6M
−3M

...
6M
−3M




,

B̃ : = B ∪




−2M
+2M

...
−2M
+2M




.

The following are possible members of the pareto sum Ã+ B̃:

1. a+ b, where a ∈ A, b ∈ B,

2. a+ (−2M,+2M, . . . ,−2M,+2M)T , where a ∈ A,

3. c+ (2M,−2M, . . . ,+2M,−2M)T + b, where c ∈ C, b ∈ B,

4. c+ (2M,−2M, . . . ,+2M,−2M)T + (−2M,+2M, . . . ,−2M,+2M)T = c, where c ∈ C,

5. b+ (6M,−3M, . . . , 6M,−3M)T , where b ∈ B,

6. (6M,−3M, . . . , 6M,−3M)T + (−2M,+2M, . . . ,−2M,+2M)T = (4M,−M, . . . , 4M,−M)T .

Notice that, the elements of type 3 are dominated by the element of type 6. The elements 2, 4, 5, 6
are incomparable.

We let C ′ be the union of elements of type 2, 4, 5, 6. and let C̃ be the minimal elements of C ′,
which can be found in time Õ(n) by [43]. Furthermore, the inclusion property holds trivially as C̃
is chosen from elements of the sumset Ã+ B̃.

We remark at this point that, minimizing does not affect the dominance condition or the
inclusion condition.

For the correctness assume A,B,C fulfill the dominance condition, then all elements of type 1
are dominated by some elements of type 4. Thus Ã, B̃ and C̃ fufill the dominance condition.

On the contrary assume that for some a ∈ A, b ∈ B that a + b is truly dominates all c ∈ C,
then an element of type 1 would need to be in C̃ for the dominance condition to hold.

Lemma 7.4. There is an O(n2−ϵ) time algorithm for an ϵ > 0 for Verification of Pareto Sum
(Extended Version) if and only if there is an O(n2−ϵ

′
) time algorithm for an ϵ′ > 0 for Verification

of Pareto Sum.

Proof. For the first direction, let us assume we are given an instance of Verification of Pareto Sum
(Extended Version). Thus, we ask whether C fulfills the following 3 criteria.

1. ∀a ∈ A∀b ∈ B∃c ∈ C : a+ b ≤ c,

2. ∀c ∈ C∃a ∈ A∃b ∈ B : a+ b = c,

29

3. ¬∃c ∈ C∃c′ ∈ C ′ : c ̸= c′ ∧ c ≤ c′.
Requirement 1 can be immediately checked by a call to Verification of Pareto Sum. Requirement
2 is in FOPZ(∀∃∃), thus can be reduced to 3-SUM by Lemma 2.2. This 3-SUM instance can be
reduced to an instance of Additive Sumset approximation by Theorem 2.3, which is in FOPZ(∀∀∃).
By the completeness of Verification of Pareto Sum for the class FOPZ(∀∀∃), we can conclude by
a call to Verification of Pareto Sum. Requirement 3 is known to be decidable in time Õ(n) by
orthogonal range tree methods [43].

For the other direction, assume we are given an instance of Verification of Pareto Sum, we
simply conclude by an application of Lemma 7.3.

Thus, for subquadratic reductions, we can restrict ourselves to the Verification of Pareto Sum
problem, which essentially only checks the dominance condition.

Let us now consider the natural problem of computing the Pareto Sum.

Definition 7.5 (Pareto Sum). Given sets A,B ⊆ Zd, compute a set C ⊆ Z, such that A,B,C
satisfy the Inclusion, Dominance and Minimality condition.

In the following, we argue why the lower bounds to Verification of Pareto Sum translate to
lower bounds to computation of the Pareto Sum. Formally, we prove:

Lemma 7.6. If there is an output sensitive algorithm to compute the Pareto Sum of sets A,B ⊆ Zd
in time O(n2−ϵ) for an ϵ > 0, then one can also decide Verification of Pareto Sum of sets A,B,C
in time O(n2−ϵ

′
) for an ϵ′ > 0.

Proof. We make use of Lemma 7.3. Construct the sets Ã, B̃ as in Lemma 7.3.
We then compute the Pareto Sum of Ã, B̃ by using an output sensitive algorithm, where we

stop the output after |A| + |C| + |B| + 2 many steps. Let C ′ be defined as in Lemma 7.3. If
|C ′| > |A| + |C| + |B| + 1, we conclude that the Verification of Pareto Sum instance is a NO
instance.

Now we argue as in Lemma 7.3, the elements in the set C ′ are only of the type 2, 4, 5, 6 if and
only if A,B,C satisfy the dominance condition, which is equivalent to saying A,B,C are a YES
instance to Verification of Pareto Sum.

We conclude the section with our resulting hardness results for computing Pareto Sums.

Theorem 1.7 (Pareto Sum Computation Lower Bound). The following conditional lower bounds
hold for output-sensitive Pareto sum computation:

1. If there is ϵ > 0 such that we can compute the Pareto sum C of A,B ⊆ Z2, whenever C is of
size Θ(n), in time O(n2−ϵ), then the 3-SUM hypothesis fails (thus, for any FOPkZ formula ϕ of
inequality dimension at most 3, there is ϵ′ > 0 such that ϕ can be decided in time O(nk−1−ϵ′)).

2. If for all d ≥ 2, there is ϵ > 0 such that we can compute the Pareto sum C of A,B ⊆ Zd,
whenever C is of size Θ(n), in time O(n2−ϵ), then there is some ϵ′ > 0 such that we can
decide all FOPZ formulas with k quantifiers not ending in ∃∀∃ or ∀∃∀ in time O(nk−1−ϵ′).

Proof. 1. Combine the 3-SUM hardness of Verification of Pareto Sum (Lemma 2.4) together
with Lemma 7.6.

2. Consider a formula ϕ in FOPkZ not ending in ∃∀∃ or ∀∃∀. We brute-force over the first k − 3
quantifiers. Thus, it remains to solve a formula in FOP3

Z(with a different quantifier structure
than ∃∀∃ or ∀∃∀), which can be reduced to Verification of Pareto Sum. Finally, conclude by
an application of Lemma 7.6.

30

8 Future Work

While we exhibit a pair of problems that is complete for the class FOPZ, one could still ask whether
there is a subquadratic reduction from Hausdorff distance under n Translations to Verification
of Pareto Sum. As a result there would be a single complete problem (or rather the canonical
multidimensional family of a single geometric problem) for FOPZ.

Is Verification of Pareto Sum complete for the class FOPZ?

Interestingly, previous completeness theorems [45] were able to establish a problem of quantifier
structure ∀∀∃ (the Orthogonal Vectors problem) as complete by making use of a technique in [61]
that was originally used to show subcubic equivalence between All-Pairs Negative Triangle and
Negative Triangle. However, a major problem we encounter is that while the third quantifier in
the Orthogonal Vectors problem ranges over a sparse (intuitively: subpolynomially sized) domain
(i.e., the dimensions of the vectors), the third quantifier in Pareto Sum Verification ranges over a
linearly sized domain (i.e., the set C).

Finally, we ask if our 3-SUM completeness result for arbitrary quantifier structures can be
improved upon.

Can we establish a d > 3 such that 3-SUM is complete for FOPZ formulas of inequality dimension
at most d?

Acknowledgements

The authors thank the ITCS reviewers for the constructive feedback as well as Karl Bringmann
and Nick Fischer for helpful discussions.

References

[1] Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Fine-grained com-
plexity of analyzing compressed data: Quantifying improvements over decompress-and-solve.
In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 192–203. IEEE Computer Soci-
ety, 2017. doi:10.1109/FOCS.2017.26.

[2] Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Impossibility re-
sults for grammar-compressed linear algebra. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.
cc/paper/2020/hash/645e6bfdd05d1a69c5e47b20f0a91d46-Abstract.html.

[3] Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. Hardness of approximation in
p via short cycle removal: cycle detection, distance oracles, and beyond. In Stefano Leonardi
and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, pages 1487–1500. ACM, 2022. doi:10.1145/
3519935.3520066.

31

https://doi.org/10.1109/FOCS.2017.26
https://proceedings.neurips.cc/paper/2020/hash/645e6bfdd05d1a69c5e47b20f0a91d46-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/645e6bfdd05d1a69c5e47b20f0a91d46-Abstract.html
https://doi.org/10.1145/3519935.3520066
https://doi.org/10.1145/3519935.3520066

[4] Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-sum conjecture. In Fedor V.
Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Lan-
guages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July
8-12, 2013, Proceedings, Part I, volume 7965 of Lecture Notes in Computer Science, pages
1–12. Springer, 2013. doi:10.1007/978-3-642-39206-1_1.

[5] Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges. In Andreas S.
Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014 - 22th Annual European Sym-
posium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes
in Computer Science, pages 1–12. Springer, 2014. doi:10.1007/978-3-662-44777-2_1.

[6] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434–443. IEEE
Computer Society, 2014. doi:10.1109/FOCS.2014.53.

[7] Pankaj K. Agarwal and Alex Steiger. An output-sensitive algorithm for computing the union
of cubes and fat boxes in 3d. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors,
48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 10:1–10:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/
LIPIcs.ICALP.2021.10, doi:10.4230/LIPICS.ICALP.2021.10.

[8] Josh Alman, Timothy M. Chan, and R. Ryan Williams. Polynomial representations of thresh-
old functions and algorithmic applications. In Irit Dinur, editor, IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Re-
gency, New Brunswick, New Jersey, USA, pages 467–476. IEEE Computer Society, 2016.
doi:10.1109/FOCS.2016.57.

[9] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for orthogonal
range searching. In 41st Annual Symposium on Foundations of Computer Science, FOCS
2000, 12-14 November 2000, Redondo Beach, California, USA, pages 198–207. IEEE Computer
Society, 2000. doi:10.1109/SFCS.2000.892088.

[10] Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On hard-
ness of jumbled indexing. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias
Koutsoupias, editors, Automata, Languages, and Programming - 41st International Collo-
quium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, vol-
ume 8572 of Lecture Notes in Computer Science, pages 114–125. Springer, 2014. doi:

10.1007/978-3-662-43948-7_10.

[11] Haozhe An, Mohit Gurumukhani, Russell Impagliazzo, Michael Jaber, Marvin Künnemann,
and Maria Paula Parga Nina. The fine-grained complexity of multi-dimensional order-
ing properties. Algorithmica, 84(11):3156–3191, 2022. URL: https://doi.org/10.1007/
s00453-022-01014-x, doi:10.1007/S00453-022-01014-X.

[12] Christian Artigues, Marie-José Huguet, Fallou Gueye, Frédéric Schettini, and Laurent Dezou.
State-based accelerations and bidirectional search for bi-objective multi-modal shortest paths.
Transportation Research Part C: Emerging Technologies, 27:233–259, 2013.

32

https://doi.org/10.1007/978-3-642-39206-1_1
https://doi.org/10.1007/978-3-662-44777-2_1
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.4230/LIPIcs.ICALP.2021.10
https://doi.org/10.4230/LIPIcs.ICALP.2021.10
https://doi.org/10.4230/LIPICS.ICALP.2021.10
https://doi.org/10.1109/FOCS.2016.57
https://doi.org/10.1109/SFCS.2000.892088
https://doi.org/10.1007/978-3-662-43948-7_10
https://doi.org/10.1007/978-3-662-43948-7_10
https://doi.org/10.1007/s00453-022-01014-x
https://doi.org/10.1007/s00453-022-01014-x
https://doi.org/10.1007/S00453-022-01014-X

[13] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. Better approximations for tree sparsity
in nearly-linear time. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 2215–2229. SIAM, 2017. doi:10.1137/1.9781611974782.145.

[14] Stephen A Bloch, Jonathan F Buss, and Judy Goldsmith. How hard are n 2-hard problems?
ACM SIGACT News, 25(2):83–85, 1994.

[15] Jean-Daniel Boissonnat, Micha Sharir, Boaz Tagansky, and Mariette Yvinec. Voronoi diagrams
in higher dimensions under certain polyhedral distance functions. Discret. Comput. Geom.,
19(4):485–519, 1998. doi:10.1007/PL00009366.

[16] Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann. Fine-grained
completeness for optimization in P. In Mary Wootters and Laura Sanità, editors, Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle, Washington,
USA (Virtual Conference), volume 207 of LIPIcs, pages 9:1–9:22. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.
2021.9, doi:10.4230/LIPICS.APPROX/RANDOM.2021.9.

[17] Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann. A structural
investigation of the approximability of polynomial-time problems. In Mikolaj Bojanczyk,
Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229
of LIPIcs, pages 30:1–30:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL:
https://doi.org/10.4230/LIPIcs.ICALP.2022.30, doi:10.4230/LIPICS.ICALP.2022.30.

[18] Karl Bringmann, Nick Fischer, and Marvin Künnemann. A fine-grained analogue of schaefer’s
theorem in P: dichotomy of existsˆk-forall-quantified first-order graph properties. In Amir
Shpilka, editor, 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019,
New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 31:1–31:27. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.CCC.2019.31, doi:
10.4230/LIPICS.CCC.2019.31.

[19] Karl Bringmann, Nick Fischer, and Vasileios Nakos. Sparse nonnegative convolution is equiv-
alent to dense nonnegative convolution. In Samir Khuller and Virginia Vassilevska Williams,
editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Vir-
tual Event, Italy, June 21-25, 2021, pages 1711–1724. ACM, 2021. doi:10.1145/3406325.

3451090.

[20] Karl Bringmann, Nick Fischer, and Vasileios Nakos. Deterministic and las vegas algorithms
for sparse nonnegative convolution. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Pro-
ceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual
Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 3069–3090. SIAM, 2022.
doi:10.1137/1.9781611977073.119.

[21] Karl Bringmann, Ahmed Ghazy, and Marvin Künnemann. Exploring the approximability
landscape of 3sum. In Timothy M. Chan, Johannes Fischer, John Iacono, and Grzegorz
Herman, editors, 32nd Annual European Symposium on Algorithms, ESA 2024, September 2-
4, 2024, Royal Holloway, London, United Kingdom, volume 308 of LIPIcs, pages 34:1–34:15.

33

https://doi.org/10.1137/1.9781611974782.145
https://doi.org/10.1007/PL00009366
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.9
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.9
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.9
https://doi.org/10.4230/LIPIcs.ICALP.2022.30
https://doi.org/10.4230/LIPICS.ICALP.2022.30
https://doi.org/10.4230/LIPIcs.CCC.2019.31
https://doi.org/10.4230/LIPICS.CCC.2019.31
https://doi.org/10.4230/LIPICS.CCC.2019.31
https://doi.org/10.1145/3406325.3451090
https://doi.org/10.1145/3406325.3451090
https://doi.org/10.1137/1.9781611977073.119

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/
LIPIcs.ESA.2024.34, doi:10.4230/LIPICS.ESA.2024.34.

[22] Karl Bringmann and Vasileios Nakos. Fast n-fold boolean convolution via additive combi-
natorics. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glas-
gow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 41:1–41:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.
2021.41, doi:10.4230/LIPICS.ICALP.2021.41.

[23] Karl Bringmann and Vasileios Nakos. A fine-grained perspective on approximating subset
sum and partition. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1797–
1815. SIAM, 2021. doi:10.1137/1.9781611976465.108.

[24] Karl Bringmann and André Nusser. Translating hausdorff is hard: Fine-grained lower bounds
for hausdorff distance under translation. In Kevin Buchin and Éric Colin de Verdière, editors,
37th International Symposium on Computational Geometry, SoCG 2021, June 7-11, 2021,
Buffalo, NY, USA (Virtual Conference), volume 189 of LIPIcs, pages 18:1–18:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.
SoCG.2021.18, doi:10.4230/LIPICS.SOCG.2021.18.

[25] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis
and consequences for non-reducibility. In Madhu Sudan, editor, Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January
14-16, 2016, pages 261–270. ACM, 2016. doi:10.1145/2840728.2840746.

[26] Timothy M. Chan. Minimum l ∞ hausdorff distance of point sets under translation: Gener-
alizing klee’s measure problem. In Erin W. Chambers and Joachim Gudmundsson, editors,
39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023,
Dallas, Texas, USA, volume 258 of LIPIcs, pages 24:1–24:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.SoCG.2023.24,
doi:10.4230/LIPICS.SOCG.2023.24.

[27] Timothy M. Chan and Moshe Lewenstein. Clustered integer 3sum via additive combinatorics.
In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 31–40. ACM, 2015. doi:10.1145/2746539.2746568.

[28] Timothy M. Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Hardness for triangle
problems under even more believable hypotheses: reductions from real apsp, real 3sum, and
OV. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1501–1514. ACM,
2022. doi:10.1145/3519935.3520032.

[29] Timothy M. Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Fredman’s trick meets
dominance product: Fine-grained complexity of unweighted apsp, 3sum counting, and more. In
Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 419–432.
ACM, 2023. doi:10.1145/3564246.3585237.

34

https://doi.org/10.4230/LIPIcs.ESA.2024.34
https://doi.org/10.4230/LIPIcs.ESA.2024.34
https://doi.org/10.4230/LIPICS.ESA.2024.34
https://doi.org/10.4230/LIPIcs.ICALP.2021.41
https://doi.org/10.4230/LIPIcs.ICALP.2021.41
https://doi.org/10.4230/LIPICS.ICALP.2021.41
https://doi.org/10.1137/1.9781611976465.108
https://doi.org/10.4230/LIPIcs.SoCG.2021.18
https://doi.org/10.4230/LIPIcs.SoCG.2021.18
https://doi.org/10.4230/LIPICS.SOCG.2021.18
https://doi.org/10.1145/2840728.2840746
https://doi.org/10.4230/LIPIcs.SoCG.2023.24
https://doi.org/10.4230/LIPICS.SOCG.2023.24
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1145/3519935.3520032
https://doi.org/10.1145/3564246.3585237

[30] Ruiwen Chen and Rahul Santhanam. Improved algorithms for sparse MAX-SAT and max-k-
csp. In Marijn Heule and Sean A. Weaver, editors, Theory and Applications of Satisfiability
Testing - SAT 2015 - 18th International Conference, Austin, TX, USA, September 24-27,
2015, Proceedings, volume 9340 of Lecture Notes in Computer Science, pages 33–45. Springer,
2015. doi:10.1007/978-3-319-24318-4_4.

[31] L. Paul Chew, Dorit Dor, Alon Efrat, and Klara Kedem. Geometric pattern matching in d
-dimensional space. Discret. Comput. Geom., 21(2):257–274, 1999. doi:10.1007/PL00009420.

[32] L Paul Chew and Klara Kedem. Improvements on geometric pattern matching problems. In
Algorithm Theory—SWAT’92: Third Scandinavian Workshop on Algorithm Theory Helsinki,
Finland, July 8–10, 1992 Proceedings 3, pages 318–325. Springer, 1992.

[33] L. Paul Chew and Klara Kedem. Improvements on geometric pattern matching prob-
lems. In Otto Nurmi and Esko Ukkonen, editors, Algorithm Theory - SWAT ’92, Third
Scandinavian Workshop on Algorithm Theory, Helsinki, Finland, July 8-10, 1992, Proceed-
ings, volume 621 of Lecture Notes in Computer Science, pages 318–325. Springer, 1992.
doi:10.1007/3-540-55706-7_28.

[34] Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard
matching. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory
of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 592–601. ACM, 2002.
doi:10.1145/509907.509992.

[35] Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019. doi:

10.1145/3293465.

[36] Holger Dell, Marc Roth, and Philip Wellnitz. Counting answers to existential questions. In
Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th
International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-
12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 113:1–113:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.113,
doi:10.4230/LIPICS.ICALP.2019.113.

[37] Bartlomiej Dudek, Pawel Gawrychowski, and Tatiana Starikovskaya. All non-trivial variants of
3-ldt are equivalent. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam
Kamath, and Julia Chuzhoy, editors, Proceedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
974–981. ACM, 2020. doi:10.1145/3357713.3384275.

[38] Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliography of multiob-
jective combinatorial optimization. OR-spektrum, 22:425–460, 2000.

[39] Jeff Erickson. New lower bounds for convex hull problems in odd dimensions. SIAM J.
Comput., 28(4):1198–1214, 1999. doi:10.1137/S0097539797315410.

[40] Nick Fischer, Ce Jin, and Yinzhan Xu. New applications of 3sum-counting in fine-grained
complexity and pattern matching, 2024. To appear in SODA 2025. URL: https://arxiv.
org/abs/2410.20764, arXiv:2410.20764.

35

https://doi.org/10.1007/978-3-319-24318-4_4
https://doi.org/10.1007/PL00009420
https://doi.org/10.1007/3-540-55706-7_28
https://doi.org/10.1145/509907.509992
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3293465
https://doi.org/10.4230/LIPIcs.ICALP.2019.113
https://doi.org/10.4230/LIPICS.ICALP.2019.113
https://doi.org/10.1145/3357713.3384275
https://doi.org/10.1137/S0097539797315410
https://arxiv.org/abs/2410.20764
https://arxiv.org/abs/2410.20764
https://arxiv.org/abs/2410.20764

[41] Nick Fischer, Marvin Künnemann, and Mirza Redzic. The effect of sparsity on k -dominating
set and related first-order graph properties. In David P. Woodruff, editor, Proceedings of the
2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA,
January 7-10, 2024, pages 4704–4727. SIAM, 2024. doi:10.1137/1.9781611977912.168.

[42] Daniel Funke, Demian Hespe, Peter Sanders, Sabine Storandt, and Carina Truschel. Pareto
sums of pareto sets: Lower bounds and algorithms, 2024. URL: https://arxiv.org/abs/
2409.10232, arXiv:2409.10232.

[43] Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling and related techniques
for geometry problems. In Richard A. DeMillo, editor, Proceedings of the 16th Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages
135–143. ACM, 1984. doi:10.1145/800057.808675.

[44] Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995. doi:10.1016/0925-7721(95)00022-2.

[45] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness
for first-order properties on sparse structures with algorithmic applications. ACM Trans.
Algorithms, 15(2):23:1–23:35, 2019. doi:10.1145/3196275.

[46] Demian Hespe, Peter Sanders, Sabine Storandt, and Carina Truschel. Pareto sums of pareto
sets. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors,
31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amster-
dam, The Netherlands, volume 274 of LIPIcs, pages 60:1–60:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ESA.2023.60, doi:
10.4230/LIPICS.ESA.2023.60.

[47] Daniel P. Huttenlocher and Klara Kedem. Computing the minimum hausdorff distance for
point sets under translation. In Raimund Seidel, editor, Proceedings of the Sixth Annual
Symposium on Computational Geometry, Berkeley, CA, USA, June 6-8, 1990, pages 340–349.
ACM, 1990. doi:10.1145/98524.98599.

[48] Zahra Jafargholi and Emanuele Viola. 3sum, 3xor, triangles. Algorithmica,
74(1):326–343, 2016. URL: https://doi.org/10.1007/s00453-014-9946-9, doi:10.1007/
S00453-014-9946-9.

[49] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjec-
ture. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016,
pages 1272–1287. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch89,
doi:10.1137/1.9781611974331.CH89.

[50] Daniel Kroening and Ofer Strichman. Decision procedures. Springer, 2016.

[51] Marvin Künnemann. A tight (non-combinatorial) conditional lower bound for klee’s measure
problem in 3d. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2022, Denver, CO, USA, October 31 - November 3, 2022, pages 555–566. IEEE, 2022. doi:

10.1109/FOCS54457.2022.00059.

[52] Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams. Deter-
ministic time-space trade-offs for k-sum. In Ioannis Chatzigiannakis, Michael Mitzenmacher,

36

https://doi.org/10.1137/1.9781611977912.168
https://arxiv.org/abs/2409.10232
https://arxiv.org/abs/2409.10232
https://arxiv.org/abs/2409.10232
https://doi.org/10.1145/800057.808675
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.1145/3196275
https://doi.org/10.4230/LIPIcs.ESA.2023.60
https://doi.org/10.4230/LIPICS.ESA.2023.60
https://doi.org/10.4230/LIPICS.ESA.2023.60
https://doi.org/10.1145/98524.98599
https://doi.org/10.1007/s00453-014-9946-9
https://doi.org/10.1007/S00453-014-9946-9
https://doi.org/10.1007/S00453-014-9946-9
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611974331.CH89
https://doi.org/10.1109/FOCS54457.2022.00059
https://doi.org/10.1109/FOCS54457.2022.00059

Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of
LIPIcs, pages 58:1–58:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL:
https://doi.org/10.4230/LIPIcs.ICALP.2016.58, doi:10.4230/LIPICS.ICALP.2016.58.

[53] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for
shortest cycles and paths in sparse graphs. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1236–1252. SIAM, 2018. doi:10.1137/1.9781611975031.80.

[54] Thibaut Lust and Daniel Tuyttens. Variable and large neighborhood search to solve the
multiobjective set covering problem. Journal of Heuristics, 20:165–188, 2014.

[55] André Nusser. Fine-grained complexity and algorithm engineering of geometric similarity
measures. PhD thesis, Saarland University, Saarbrücken, Germany, 2021. URL: https:

//publikationen.sulb.uni-saarland.de/handle/20.500.11880/33904.

[56] Mihai Puatracscu. Towards polynomial lower bounds for dynamic problems. In Leonard J.
Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 603–610. ACM, 2010. doi:

10.1145/1806689.1806772.

[57] Britta Schulze, Kathrin Klamroth, and Michael Stiglmayr. Multi-objective unconstrained com-
binatorial optimization: a polynomial bound on the number of extreme supported solutions.
Journal of Global Optimization, 74(3):495–522, 2019.

[58] Carola Wenk. Shape matching in higher dimensions. PhD thesis, Free University of Berlin,
Dahlem, Germany, 2003. URL: http://www.diss.fu-berlin.de/2003/151/index.html.

[59] Ryan Williams. Faster decision of first-order graph properties. In Thomas A. Henzinger
and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages
80:1–80:6. ACM, 2014. doi:10.1145/2603088.2603121.

[60] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the international congress of mathematicians: Rio de janeiro 2018, pages
3447–3487. World Scientific, 2018.

[61] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix
and triangle problems. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 645–654. IEEE Computer
Society, 2010. doi:10.1109/FOCS.2010.67.

[62] Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted
subgraphs. SIAM J. Comput., 42(3):831–854, 2013. doi:10.1137/09076619X.

A Preliminaries

Let us first state problems and hypotheses we work with, starting with the k-SUM problem.

37

https://doi.org/10.4230/LIPIcs.ICALP.2016.58
https://doi.org/10.4230/LIPICS.ICALP.2016.58
https://doi.org/10.1137/1.9781611975031.80
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/33904
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/33904
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1145/1806689.1806772
http://www.diss.fu-berlin.de/2003/151/index.html
https://doi.org/10.1145/2603088.2603121
https://doi.org/10.1109/FOCS.2010.67
https://doi.org/10.1137/09076619X

Definition A.1 (The k-SUM problem). Given k finite sets of at most n integers A1, A2, . . . , Ak ⊆
{−nk, . . . , 0, . . . , nk}, and an integer t, determine if ∃a1 ∈ A1∃a2 ∈ A2 . . . ∃ak ∈ Ak :

∑k
i=1 ai = t.

There is a simple meet-in-the-middle approach to solve the above problem in time O(n⌈k/2⌉+o(1)).
It is widely believed that this is optimal, as stated in the following hypothesis.

Hypothesis A.2 (The k-SUM Hypothesis). Let k ≥ 3. There is no algorithm solving the k-SUM

problem in time O(n⌈
k
2
⌉−ϵ) for any ϵ > 0.

For discussion of its plausibility, we refer to the survey [60]. We work in the standard word
RAM model with words of O(log(n)) bits. As we aim to relate runtime between quadratic time
problems, we need a different notion of reduction than those used to prove NP completeness.

Fine-grained reductions were first introduced for subcubic runtimes in [61]. A general definition
can be found in [60]. In this paper, the following definition of fine-grained reduction, also used in
[16] suffices. A more detailed description on fine-grained reductions can be found in [25].

Definition A.3 (Fine-grained reductions). Consider problems P1, P2 with presumed time complex-
ities T1, T2, respectively. A fine-grained reduction from P1 to P2 is an algorithm A with oracle
access to P2. Whenever A uses an O(T2(n)

1−ϵ) algorithm for oracle calls to P2 (for an ϵ > 0),
there exists an ϵ′ > 0, such that A runs in time O(T1(n)

1−ϵ′). We write this as (P1, T1) ≤ (P2, T2).

We introduce for problems P,Q the notation P ≤c Q if and only if (P, nc) ≤ (Q,nc) holds.
Furthermore, P and Q are fine-grained equivalent, denoted by P ≡c Q, if and only if (P, nc) ≤
(Q,nc) and (Q,nc) ≤ (P, nc) holds. We call P1, P2 subquadratic equivalent if P1 ≡2 P2.

A convolution of two vectors x := (x0, . . . , xn−1) y := (y0, . . . , yn−1) is defined as z = (z0, . . . , z2n−2),
where

z[k] :=
∑

i,j∈[n−1],i+j=k

xi · yj .

It is a well known fact that one can compute the sumset A+B by computing the convolution of the
characteristic vectors of A and B. In particular, we also make use of the theorem from Bringmann
et al. [20] on sparse convolutions.

Theorem A.4. There is a deterministic algorithm to compute the convolution of two nonnegative
vectors A,B ∈ Nn in time O(tpolylog(n∆)), where t denotes the number of non-zero entries in the
output convolution vector and ∆ denotes the maximum entry size of the vectors A,B.

The convolutional 3−SUM problem asks for three sequences A,B,C of size n, whether ∃0 ≤
i, j, k ≤ n − 1 : a[i] + b[j] = c[k]. It is well known by a reduction from Pătras,cu [56] that there is
no O(n2−ϵ) for an ϵ > 0 algorithm for the Convolutional 3-SUM problem if and only if the 3-SUM
hypothesis holds. The strong convolutional 3-SUM hypothesis asks this question over a linearly
sized universe [10], that is A,B,C ⊆ {−n, . . . , n}, and has recently been shown to be equivalent to
the strong 3-SUM hypothesis (3-SUM over the universe {−n2, . . . , n2}) [21].

Let us fix the notation throughout the paper. We denote the sumset U + V := {u + v : u ∈
U, v ∈ V }. The i-th entry of a vector v is denoted by v[i]. For natural numbers n, we denote by
n[i] the i-th bit of n, where n[0] is the least significant bit. Furthermore, we say the i-th bit of a
natural number is set iff n[i] = 1. For vectors u, v we write u ≤ v if and only if for all dimensions i
it holds that u[i] ≤ v[i]. If u ≤ v, we say u is dominated by v.

For a unary function f : U → M and a set A ⊆ U denote f(A) := {f(a) : a ∈ A}. We
abbreviate by [t] := {0, . . . , t}. The notation Õ(T) := T logO(1) T is used to hide poly-logarithmic
factors. We denote the cardinality of a set A by #A or |A|. Linear Integer arithmetic refers to

38

the first order logic over the domain Z with vocabulary: equality (=), inequality (<,>,≥,≤), and
addition (+). We use

(
V
k

)
to denote all k-element subsets of V .

The (M,d)-vector k-SUM problem is defined as follows [5]. For given k sets A1, . . . , Ak of
size at most n where each Ai ⊆ {−M, . . . ,M}d and a target t ∈ {−M, . . . ,M}d, do there exist
a1 ∈ A1, . . . , ak ∈ Ak : a1 + · · · + ak = t? Through the standard technique of interpreting vectors
as integers we get:

Lemma A.5. The (M,d)-vector k-SUM problem can be reduced to the k-SUM problem with uni-
verse size {0, . . . , (kM + 1)d} in time O(n logM).

For a proof of the above see the proof of Abboud et al. [5] or our multiset adaptation of the
proof in Lemma 4.2. A functional version of the 3-SUM problem we will require is the following:

Definition A.6 (All-ints 3-SUM). Given sets A,B,C of at most n integers A,B,C ⊆ {−nk, . . . , nk}
for each a ∈ A determine, whether there exist b ∈ B and c ∈ C such that a+ b+ c = t.

Lemma A.7 (All-ints 3-SUM ≡2 3-SUM [61]). There exists a O(n2−ϵ) time algorithm for the All-
ints 3-SUM problem for an ϵ > 0 if and only if there exists a O(n2−ϵ

′
) time algorithm for 3-SUM

for an ϵ′ > 0.

For a proof see results from Williams et al. [61]. It is known that the reduction can be made
deterministic for instance using the 3-SUM self reduction from Lincoln et al. [52] combined with
the technique introduced by Williams et al. [61]. We continue with a 3-SUM version, which aims
to count witnesses.

Definition A.8 (#3-SUM). Given sets A,B,C of at most n integers A,B,C ⊆ {−nk, . . . , nk}.
The #3-SUM problem asks for the number of triplets (a, b, c) ∈ A×B ×C such that a+ b+ c = 0.
22

Definition A.9 (All-ints #3-SUM). Given sets A,B,C of at most n integers A,B,C ⊆ {−nk, . . . , nk}.
The All-ints #3-SUM problem, asks to determine for each a ∈ A the number of (b, c) ∈ B×C such
that a+ b+ c = 0.

In our paper, we make use of the following recent powerful result from Chan et al. [29]

Theorem A.10 ([29]). The following problems are all subquadratic equivalent under randomized
fine-grained reductions:

• #All-ints 3-SUM,

• 3-SUM,

• #3-SUM.

Definition A.11 (3-Uniform k-hyperclique problem). Given a k-partite 3-uniform hypergraph G =
(V,E), that is the vertices are a disjoint union of sets V1, V2, . . . , Vk of size n each, and E is a set
of edges of the form va, vb, vc where a, b, c are distinct and va ∈ Va, vb ∈ Vb, vc ∈ Vc. The problem
asks if there exists a k−Clique in G, that is vertices v1 ∈ V1, . . . , vk ∈ Vk, such that for all

a, b, c ∈
(
{1, . . . , k}

3

)
there exists an edge {va, vb, vc}.

22This version of 3-SUM is equivalent to the version where a+ b+ c = t for an integer t is asked. In particular by
setting C′ := C − {t}, we get a reduction that preserves all solutions.

39

There is a naive algorithm deciding the above problem in O(nk). It is strongly believed that
this runtime is optimal. One reason is that matrix multiplication techniques that speed up clique
detections in graphs (rather than hypergraphs) seem to fail, see for instance [53]. Furthermore,
a faster algorithm would lead to an exponential improvement over current 2n−o(n) algorithms for
MAX 3-SAT, see [30, 8]. Thus, we work with the following hypothesis.

Hypothesis A.12 (3-Uniform Hyperclique Hypothesis). There is no O(nk−ϵ) algorithm solving
the 3-Uniform k-hyperclique problem for k ≥ 4 and an ϵ > 0.

In [35], Cygan et al. studied the MaxConv lower bound problem, but were unable to give
a nontrivial upperbound. They managed to only show a reduction from this problem to the Lp
necklace alignment problem. The problem is defined as follows:

Definition A.13 (MaxConv lower bound). Given integer arrays A,B,C of length n. Determine
whether C[k] ≤ maxi+j=k(A[i] +B[j]) holds.

A key in our proofs will be a slightly generalized version of a lemma, whose aim it is to reduce
inequality checking to a logarithmic amount of equality checks [62].

Lemma A.14 (Bit-trick). For any non-negative integers x1, x2, . . . , xk, z ∈ {0, . . . , U}, we have
the following equivalence:

x1 + · · ·+ xk > z ⇐⇒ There are ℓ ∈ {1, . . . , [⌈log2(U)⌉]}, b ∈ {1, 2, . . . , k} :
preℓ(x1) + · · ·+ preℓ(xk) = preℓ(z) + b,

where preℓ(x) denotes the number remaining when taking the first l bits of x, where the most
significant bit is considered the first bit. Formally, for z ∈ {0, . . . , U} and ℓ ∈ {0, . . . , ⌈log2(U)⌉}
preℓ(z) := ⌊ z

2B−ℓ ⌋, where B denotes the number of bits in z.

Proof. If preℓ(x1) + preℓ(x2) + · · ·+ preℓ(xk) = preℓ(z) + b, for B-bit integers holds, we have

B−1∑
i=B−ℓ

2ix1[i] + · · ·+
B−1∑
i=B−l

2ixk[i] =

B−1∑
i=B−ℓ

2iz[i] + 2B−lb

=⇒
B−1∑
i=B−ℓ

2i(x1[i] + x2[i] + · · ·+ xk[i]) =

B−1∑
i=B−ℓ

2iz[i] + 2B−lb

=⇒
k∑
i=1

xi = z +
B−ℓ−1∑
i=0

(x1[i] + x2[i] + · · ·+ xk[i]− z[i]) + 2B−ℓb

=⇒
k∑
i=1

xi > z.

Assume now that x1 + x2 + · · ·+ xk > z holds, let

ℓ̂ := min{i : 1 ≤ i ≤ B ∧ prei(x1) + prei(x2) + · · ·+ prei(xk) > prei(z)}.

If b ≤ k, the statement holds, for the sake of a contradiction assume

preℓ̂(x1) + preℓ̂(x2) + · · ·+ preℓ̂(xk) ≥ preℓ̂(z) + k + 1.

40

We know that the following holds for any B-bit integer x and any 1 ≤ l ≤ B

2preℓ−1(x) ≤ preℓ(x) ≤ 2preℓ−1(x) + 1.

Thus, we have

2
(
preℓ̂−1(x1) + · · ·+ preℓ̂−1(xk)

)
+ k ≥ preℓ̂(x1) + · · ·+ preℓ̂(xk)

≥ preℓ̂(z) + k + 1

≥ 2preℓ̂−1(z) + k + 1.

Concluding
preℓ̂−1(x1) + preℓ̂−1(x2) + · · ·+ preℓ̂−1(xk) ≥ preℓ̂−1(z) + 1/2,

and thereby also
preℓ̂−1(x1) + preℓ̂−1(x2) + · · ·+ preℓ̂−1(xk) > preℓ̂−1(z),

contradicting the minimality of ℓ̂.

We conclude this section with an observation.

Observation A.15. The choices of ℓ and b in Lemma A.14 are not unique, but there is a unique
ℓ ∈ {1, . . . , ⌈log2(U)⌉} and b ∈ {1, . . . , k} such that the following holds

k∑
i=1

xi > z ⇐⇒
k∑
i=1

preℓ(xi) = prel(z) + b ∧
k∑
i=1

preℓ−1(xi) = preℓ−1(z).

B Examples of problems in FOPZ

In the following, we give a plethora of examples of problems in FOPZ.

Example B.1 (3-Average free set). Consider a finite set of integers A. Is there no arithmetic
progression of length 3? We can use the negation of the following sentence to obtain an answer.

∃a1 ∈ A∃a2 ∈ A∃a3 ∈ A : a1 < a2 < a3 ∧ a1 + a3 = 2a2.

We use the condition a1 < a2 < a3 as to avoid a1 = a2 = a3. The 3-average free set problem is
known to be subquadratic equivalent to 3-SUM [37], which itself is another example.

Example B.2 (3-SUM and Conv-3SUM). Consider a finite set of integers A. Are there three
numbers in A summing up to 0? I.e.,

∃a1 ∈ A∃a2 ∈ A∃a3 ∈ A : a1 + a2 + a3 = 0.

We can also express its subquadratic equivalent formulation convolutional 3-SUM23 as a two-
dimensional formula: Representing a sequence X[0 . . . n − 1] as X ′ = {(i,X[i]) | 0 ≤ i < n},
we ask whether given sequences A[0 . . . n− 1], B[0 . . . n− 1], C[0 . . . n− 1] satisfy:

∃(i, a[i]) ∈ A′ ∃(j, b[j]) ∈ B′ ∃(k, c[k]) ∈ C ′ : a[i] + b[j] = c[k] ∧ i+ j = k

23For further discussion, see Section A.

41

More generally, we can view these problems as natural database queries with numerical data,
e.g.:

Example B.3 (Orthogonal Range and Database queries). Consider a database D, where each
entity consists of a tuple (id, age, income). The following query is part of the class FOPZ(∃3).
Do there exist three different people in D, whose average age is below 30, whose income is in the
range [10000, 20000], and whose incomes accumulate to more than 50000?

All the above examples use existentially quantified variables. This existential fragment will be
of particular interest for us.

Other quantifier structures also give rise to natural algorithmic problems.

Example B.4 (Universal 3-SUM). Given sets A,B,C ⊆ Z. Does for all a ∈ A exist b ∈ B and
c ∈ C such that c = a+ b. Clearly the problem is in FOPZ(∀∃∃). Alternatively, one can also view
the problem as a sumset expression, namely C ⊆ A+B.

We note that Universal 3-SUM seems to be a weaker version of All-ints 3-SUM and that in
general the class FOPZ(∀∃∃) seems to be the most likely to admit a subquadratic algorithm, as it
has the weakest known lower bound barrier.

Example B.5 (Verification of ∆-approximations of sumsets). Bringmann and Nakos introduce a
notion of additive approximation of sumsets in [23]. We consider the problem of verifying whether
a set additively approximates a sumset. Specifically, let A+B := {a+ b : a ∈ A, b ∈ B} denote the
sumset of A and B. We say that a set C is an additive ∆-approximation24 of A+B whenever

∀a ∈ A∀b ∈ B∃c ∈ C : c ≤ a+ b ≤ c+∆ ⇐⇒ A+B ⊆ C + {0, . . . ,∆}.

Note that we could also require each number in C to be a sum itself by taking the conjunction with
the Universal 3-SUM formula:

∀c ∈ C∃a ∈ A∃b ∈ B : a+ b = c ⇐⇒ C ⊆ A+B.

The above example makes use of the free variables in the definition of the problem FOPZ(ϕ),
in this case the additive approximation constant ∆ is a free variable and can be instantiated by an
input natural number. Interestingly, the conjunction of both conditions A + B ⊆ C + {0, . . . ,∆}
and C ⊆ A + B can be reduced to 3-SUM, as A + B ⊆ C + {0, . . . ,∆} is in FOPZ(∀∀∃) and has
inequality dimension 2, and C ⊆ A+B is in FOPZ(∀∃∃).

Example B.6 (Hausdorff Distance under n Translations). We recall the definition of the Hausdorff
Distance under n Translations problem over d-dimensional sets A,B,C, and a value γ ∈ N, where
we ask whether the following holds

δ
T (A)
−→
H

(B,C) = min
τ∈A

max
b∈B

min
c∈C
∥b− (c+ τ)∥∞ ≤ γ.

Clearly, ∥b− (c+ τ)∥∞ ≤ γ if and only if for all dimensions i ∈ {1, . . . d}, we have b[i]− (c[i] +
τ [i]) ≤ γ and (c[i] + τ [i])− b[i] ≤ γ. Thus, it remains to check

∃τ ∈ A∀b ∈ B∃c ∈ C :

d∧
i=1

b[i]− (c[i] + τ [i]) ≤ γ ∧ (c[i] + τ [i])− b[i] ≤ γ.

24We remark that we use here a simplified notion of additive approximation that is closely related to the ones used
by Bringmann et al. [23].

42

Example B.7 (Triangle Detection). Let E be the set of edges in a directed graph. Each edge has
an id and consider α, ω to be functions that denote the start and endpoint of an edge respectively.
Thus E′ = {(eid, α(e), ω(e)) : e ∈ E}. To detect a triangle we can simply ask

∃e1 ∈ E∃e2 ∈ E∃e3 ∈ E :e1[0] ̸= e2[0] ∧ e2[0] ̸= e3[0] ∧ e1[0] ̸= e3[0]∧
e1[2] = e2[1] ∧ e2[2] = e3[1] ∧ e3[2] = e1[1].

Thus a Õ(n1+ϵ) time algorithm for 3-SUM implies a Õ(m1+ϵ) time algorithm for triangle detection.

Let us now take a look at the MaxConv lower bound problem (see Definition A.13).

Lemma B.8. The MaxConv lower bound problem is a member of the class FOPZ(∃∀∃), and a
member of the class FOPZ(∀∃∃).

Proof. 1. Let

A′ = {(A[i], i) : i ∈ [n− 1]}
B′ = {(B[j], j) : j ∈ [n− 1]} ∪ {(−M,−j) : j ∈ {1, . . . , n− 1}}
C ′ = {(C[k], k) : k ∈ [n− 1]},

where M = 3 ·max (A ∪B ∪ C). We ask

∃c′ ∈ C ′∀a′ ∈ A′∃b′ ∈ B′ : (i+ j = k ∧ C ′[k] > A′[i] +B′[j]).

Thus, we can formulate MaxConv lower bound in FOPZ(∃∀∃).
We give a short proof to this equivalence in the following. We have that C[k] is a non witness
to MaxConv lower bound if and only if ∀i ∈ [n− 1] : C[k] > A[i]+B[k− i]. Now, let us make
a case distinction on i. Consider the case i ≤ k, then only j = k− i ∈ [n− 1] fulfills i+ j = k,
and due to the fact that c[k] is a non witness C[k] > A[i] +B[j]. For the case i > k, we have
j negative, which trivially fulfills C[k] > A[i] +B[j].

For the other direction notice that there exists a k ∈ [n − 1] which fulfills for all indices
i+ j = k that C[k] > A[i] +B[j].

2. For the following constructed sets:

A′ = {(A[i], i) : i ∈ [n− 1]}
B′ = {(B[j], j) : j ∈ [n− 1]}
C ′ = {(C[k], k) : k ∈ [n− 1]} ∪ {(−M,k) : k ∈ {n, ..., 2n}},

where M = 3 ·maxA∪B ∪C. It can be easily seen that the following formula in FOPZ(∀∃∃)
models the MaxConv lower bound problem,

∀c′ ∈ C ′∃a ∈ A′∃b′ ∈ B′ : i+ j = k ∧ C[k] ≤ A[i] +B[j].

The above lemma presents a witness to the hardness of the classes FOPZ(∀∃∃) and FOPZ(∃∀∃).

43

C Baseline Algorithms

Lemma C.1. Every problem in the class FOPZ(∃k) can be decided in time Õ(n⌈k/2⌉).

Proof. To this end, after substituting the free variables t̂1, . . . t̂l in the quantifier free part of ϕ,
without loss of generality, by the same arguments used in the proof of Theorem 1.1, we can transform
every such linear arithmetic formula ϕ[(t1, . . . , tl)\(t̂1, . . . , t̂l)] into the following form:

∃a1 ∈ A1 . . . ∃ak ∈ Ak :
H∨
h=1

m∧
i=1

k∑
j=1

cTh,i,jaj ≥ Sh,i.

Due to the commutativity of disjunction and existential quantifiers, we can rewrite the above in
the form:

H∨
h=1

∃a1 ∈ A1 . . . ∃ak ∈ Ak :
m∧
i=1

k∑
j=1

cTh,i,jaj ≥ Sh,i.

Now it suffices to have a look at H instances of the following problem, whose results are combined
disjunctively

∃a1 ∈ A1 . . . ∃ak ∈ Ak :
m∧
i=1

k∑
j=1

cTi,jaj ≥ Si,

where Si ∈ Z, ci,j ∈ Zdj . Consider summing up the tuples by their corresponding coefficients, that
is we consider the sets

A
′
j :=




cT1,ja

cT2,ja
...

cTm,ja

 : a ∈ Aj

 ,

and define S := (S1, S2, . . . , Sm)
T . We are now left with the following problem

∃a′1 ∈ A′
1 . . . ∃a′k ∈ A′

k :

⌈k/2⌉∑
j=1

a′j ≥
k∑

j=⌈k/2⌉+1

a′j + S

Precompute the left-hand side sums and the right-hand side sums in O(n⌈k/2⌉). Store all possible
sums in the left-hand side in a range tree, see [9]. Iterating over the precomputed sums in the
right-hand side and querying them in the range tree gives us an algorithm in time Õ(n⌈k/2⌉).

Lemma C.2. Every formula ϕ in one of the classes

FOPZ(∃∃),FOPZ(∀∀),FOPZ(∃∀),FOPZ(∀∃),

can be decided in time Õ(n).

Proof. If ϕ is in the class FOPZ(∃∃), we can conclude by the same algorithm as in Lemma C.1. If
ϕ is in the class FOPZ(∀∃), after substituting the free variables, by the same arguments used in the
proof of Theorem 1.1, we can transform ϕ to an equivalent formula of the type:

∀a1 ∈ A1∃a2 ∈ A2 :

H∨
h=1

m∧
i=1

cTh,i,1a1 + cTh,i,2a2 ≥ Sh,i,

44

which is equivalent to

∀a1 ∈ A1

H∨
h=1

∃a2 ∈ A2 :

m∧
i=1

cTh,i,1a1 + cTh,i,2a2 ≥ Sh,i.

Consider

A
(h)
2 :=




cTh,1,2a

cTh,2,2a
...

cTh,m,2a

 : a ∈ A2

 ,

S(h) := (Sh,1, . . . , Sh,m)
T , and finally a

(h)
1 := (cTh,1,1a1, c

T
h,2,1a1, c

T
h,m,1a1). Then, it remains to solve:

∀a1 ∈ A1

H∨
h=1

∃a2 ∈ A(h)
2 : a2 ≥ S(h) − a(h)1 .

Thus, we insert in H different orthogonal range trees, the elements of A
(h)
2 .

By iterating over all the elements in A1, and checking whether for any h ∈ {1, . . . ,H}, the
vector S(h) − a(h)1 is dominated by some a2 ∈ A(h)

2 via a range tree query, we can conclude.
Finally, by simply negating the formula and pushing the negation inwards, we can always get a

formula in FOPZ(∃∃) or FOPZ(∀∃).

Lemma C.3. Every problem in the class FOPkZ can be decided in time Õ(nk−1).

Proof. Let ϕ be in FOPZ. After substituting the free variables, we brute force the first k − 2
quantifiers. It remains to solve a formula φ with 2 quantifiers. We can conclude by a simple
application of Lemma C.2

D Proof of Lemma 3.1

Proof. We define the transformations for f ℓ,ψj with j ∈ {1, . . . , k} and the transformation gℓ,W,ψ as
the following vectors with 2m dimensions:

preℓ[1](M + cT1,jaj)
...

preℓ[m](M + cTm,jaj)

preℓ[1]−1(M + cT1,jaj)
...

preℓ[m]−1(M + cTm,jaj)


︸ ︷︷ ︸

=:fℓ,ψj (aj)



preℓ[1] (S1 − 1 + kM) +W [1]
...

preℓ[m](Sm − 1 + kM) +W [m]

preℓ[1]−1 (S1 − 1 + kM)
...

preℓ[m]−1(Sm − 1 + kM)


.

︸ ︷︷ ︸
=:gℓ,W,ψ(S1,...,Sm)

Notice that preℓ is applied on non-negative integers due to the choice of M. For all ℓ ∈

45

{1, . . . , ⌈log2(M)⌉}m,W ∈ {1, . . . , k}m, we have that

f ℓ,ψ1 (a1) + · · ·+ f ℓ,ψk (ak) = gℓ,ψ,W (S1, . . . , Sm)

⇐⇒
m∧
i=1

k∑
j=1

preℓ[i](M + cTi,jaj) = preℓ[i] (Si − 1 + kM) +W [i]︸ ︷︷ ︸
=:φ1(ℓ,W)

∧
m∧
i=1

k∑
j=1

preℓ[i]−1(M + cTi,jaj) = preℓ[i]−1 (Si − 1 + kM)︸ ︷︷ ︸
=:φ2(ℓ,W)

.

By Lemma A.14 (also Observation A.15), there exist unique ℓ′ ∈ {1, . . . , ⌈log2(M)⌉}m,W ′ ∈
{1, . . . , k}m such that

φ1(ℓ
′,W ′) ∧ φ2(ℓ

′,W ′) ⇐⇒
m∧
i=1

k∑
j=1

M + cTi,jaj > Si − 1 + kM,

which is equivalent to the desired conjunction of inequalities. The function of the dimensions
m+ 1, . . . , 2m, and in particular φ2(ℓ

′,W ′) are to ensure the uniqueness for the choices of b and ℓ
in Lemma A.14.

E Proof of Disjoint boxes Lemma

Lemma E.1. We can decompose a rectilinear shape of complexity n in O(n) interior- and exterior-
disjoint rectangles, some of which may be degenerate, in time O(n log n).

Proof. At the beginning, we aim to decompose the rectilinear shape into interior-disjoint rectangles.
For this purpose, we perform a sweep-line algorithm. The sweep-line goes through the x-direction.
Firstly, we maintain a collection of components given by a segment in y direction, which will
intuitively denote the opening of components(or rectangles) which are not overlapping. Each vertex
event, will now either create a new component, will enlarge an existing component, will shrink an
existing component, or will make it disjoint. By shooting a ray up and down from this event point
vertex we can create a new rectangle, together with the current existing component. The vertices
intersected by this ray, will form the starting points for the new component. For details see the
figure below. As each vertex will create at most one new rectangle, we conclude that the number
of rectangles is in O(n).

46

Figure 1: To the left we can find the rectilinear shape. To the right we find the decomposition into
interior disjoint rectangles.

The rectangles formed by the above procedure are kept as open 2-boxes. We now turn to the
face segments of these rectangles. If a vertex event point splits a segment, we decompose the
segment at this point. Clearly at most O(n) segments (1-boxes) can be created in this way. The
1-boxes we will keep as open, and the vertices as closed 0-boxes (or points).

Lemma E.2. The union of n unit cubes can be decomposed into O(n) interior- and exterior-disjoint
axis-aligned boxes, some of which may be degenerate, in time O(n log2 n).

Proof. We adapt the algorithm of [31] to also create exterior-disjoint boxes. Slice the three-
dimensional space by planes parallel to the z axis for planes z = 1, z = 2, z = 3 . . . (without
loss of generality, we can assume the cubes to be starting at z = 1). Consider the slab of cubes
generated by cutting the cubes by the plane z = i and z = i+1, where we denote by ni the number
of cubes cut by the plane z = i. The complexity of the slab is in O(ni + ni+1) by [15].

We repeat the following for each slab.
Let E be the portion of cubes that lie within the slab bounded by z = i and z = i + 1, and

let the silhouette of E be the projection on both z = i and z = i + 1 of all vertical lines whose
intersection with E is one unit long – we refer to this vertical length as height.

We firstly construct a decomposition of the silhouette of E into interior- and exterior-disjoint
boxes. To achieve this we perform a decomposition as given in Lemma E.1 of the projection of the
silhouette onto the plane z = i. After achieving this decomposition, we create 3-boxes out of the
rectangles, with height 1, which we keep open. Out of the segments, we create open 2-boxes with
height 1, and from the vertices we create open 1-boxes of height 1.

Let S be the projection of the silhouette of E onto the plane z = i, and S′ be the projection
of the silhouette of E onto the plane z = i+ 1. Moreover, let E′ be the intersection of E with the
plane z = i, and let F ′ denote the points on E′ whose vertical line length (i.e., height) changes.
Computing F ′ (with the associated heights) costs time O((ni+ni+1) log

2(ni+ni+1)) by computing
the union of the cubes in the slab by [7].

Consider F ′ without S, where S is the union of the formed rectangle decomposition of the
silhouette of E. We perform the Lemma E.1 decomposition onto this rectilinear shape, with the
restriction that the rays shot up and down do not cross S. Create the open 3-boxes just like in the
step for the silhouette, with the difference being that we use the height of each produced rectangle

47

(which by construction is uniform over the rectangle). We ignore the segments and vertices which
lie adjacent to S (they have height 1 and are already taken care of). For the remaining segments
and vertices, we create open 2-boxes and closed 1-boxes respectively, where we take the height of
the larger adjacent box. Finally, in contrast to the silhouette we also create open 2-boxes for the
faces, which lie on top of the created open 3-boxes (or rather the face lying on the height of the
3-box).

Proceed analogously for E′′ which is the intersection of E onto the plane z = i+1 and F ′′, the
points on E′′ whose vertical line length changes.

Finally, it remains to treat the rectilinear shapes E′ and E′′ separately, as none of the boxes
include the faces on the plane z = i and z = i + 1. For this again, we perform the Lemma E.1
decomposition for E′ and E′′ respectively, where we keep the rectangles and segments, as open 2
and 1-boxes respectively, and the vertices as closed 0-boxes which lie on the respective plane.

48

	Introduction
	Our approach
	Our Contributions
	k-SUM is complete for the existential fragment of FOPZ
	Completeness for counting witnesses
	Completeness for general quantifier structures of FOPZ
	3-SUM is complete for FOPZ formulas of low inequality dimension

	Further Related Work

	Technical Overview
	k-SUM is complete for existential FOPZ formulas
	On counting witnesses in FOPZ
	Completeness Theorems for General Quantifier Structures
	FOPZ() FOPZ()
	FOPZ() FOPZ()
	Completeness results for the class FOPZk

	The 3-SUM problem is complete for FOPZ formulas with Inequality Dimension at most 3
	Applications
	A lower bound for 4-SUM
	A lower bound for 3-SUM
	A lower bound on the computation of Pareto Sums

	Future Work
	Preliminaries
	Examples of problems in FOPZ
	Baseline Algorithms
	Proof of Lemma 3.1
	Proof of Disjoint boxes Lemma

