
1

Fine-grained Algorithm Design and Engineering

Solver 101
08.11.2024

www.kit.eduKIT – The Research University in the Helmholtz Association



Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group2

Overview

why we do algorithmic challenges

what you will learn

how challenges work

how to structure a solver

test instances

organization



Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group3

Why Algorithmic Challenges?

theoretical research focusses on worst case analysis
or special cases

in practice, problems are solvable efficiently
even without special cases

at least more efficiently than suspected

How well do theoretic approaches work?
Can we find new ones?

better understand engineers

baseline: beat general purpose solvers!



Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group4

Challenge Framework

differences based on specific challenge

challenge announcement, publication of partial test set

solver submission until deadline, running scoreboard

evaluation on (additional) private instances

similar to public instances

scoring based on feasibility and optimization criterion

might get you disqualified

sometimes: points for solver idea

winning solvers: invitation to associated conference?

around 10 to 100 participating teams



Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group5

In this course, you will ...

... work on more real-world problems

... engineer a solver from scratch

... learn approaches to tackle general algorithmic problems

... differentiate between theoretic results and practical possibilites

... apply standard algorithmic techniques and learn about their limitations ...

... use heuristics and general purpose solvers

... learn to evaluate algorithmic approaches

employers like algorithmic challenges



Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group6

Solver 101

you will change large portions of your code

Input Output

employ good engineering practises

we might want to understand your code

have your own reasonable internal format

input/output might change depending on source format, visualization, etc.

Encapsulation

Comments

Testing

Disclaimer: Non-exhaustive, personal preference, only basic ideas
may use existing solvers



Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group7

Where the Magic Happens

Input Output

kernelization Classic Algo.
Approaches

General
Purpose
Solvers

Param. Algos

Structural
Restrictions

Iterative /
Dynamic

Application

Heuristics

Verification

Example: Vertex Cover
...

Distinguisher

General
Tools

Composition

Want specific material? Ask us!



Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group8

Techniques

General
Purpose
Solvers

Classic Algo.
Approaches

General
Tools

simplify your problem!
less vertices, edges, solution size, etc.

low vertex degree (0, 1, 2, ...)

(try to) stay away from introducing new problems (weights, etc.)

Buss-type arguments

neighborhood-type arguments

unreducible instances called kernel

see Param. Alg. lecture [1]

[1] https : ==scale:iti :kit:edu=teaching=2024ws=param_algo=, lecture 1 (german only)

very important for many solvers

not necessary for challenge
but for understanding previous solvers

kernelization

https://scale.iti.kit.edu/_media/teaching/2024ws/param_algo/01-fpt-grundlagen-print.pdf


Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group9

Techniques

kernelization

General
Purpose
Solvers

Algo.
Approaches

General
Tools

Classic Algo.
Approaches

Structural
Restrictions

Param. Algos see param. alg. lecture
https : ==scale:iti :kit:edu=teaching=2024ws=param_algo=

keep track of your parameters
structural parameter (e.g. treewidth, planarity), output size

runtime exponential in parameter, polynomial in input size
parameter small =⇒ fast runtime

reduce optimization to decision problem

selected techniques:
branch & bound
treewidth-DP
ILP with few variables =⇒ reduction to ILP solver

not only in parameterized setting!

https://scale.iti.kit.edu/teaching/2024ws/param_algo/start


Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group10

Techniques

General
Purpose
Solvers

Algo.
Approaches

General
Tools

General
Purpose
Solvers

Iterative /
Dynamic

Application
Heuristics

NP-membership gives reduction to SAT, (M)ILP
ridiculously strongly optimized solvers
baseline for all practical use cases

ask for partial solution, dynamically add constraints
LP-solving in P!

Decide what to do? Educated guesses with heuristics!

smaller instances fast

prune your search-tree!

might speed-up computation

approximate the result

create heuristics

EvalMaxSat (github: FlorentAvellaneda)

FindMinHS (github: Felerius, i.a. KIT dev-ed)

not in solver,
ok for evaluation

GLPK (GNU Linear Programming Kit)

greedy and local search often helpful

Classic Algo.
Approaches

kernelization

https://github.com/FlorentAvellaneda/EvalMaxSAT
https://github.com/Felerius/findminhs


Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group11

Techniques

General
Purpose
Solvers

Algo.
Approaches

General
Tools

Verification Distinguisher

General
Tools

Composition

fast verification allows better use of heuristics

many instances special enough to be easily solvable

what kind of special?

distinguishing itself complex, keep track of parameters
degree distribution, guess (& bound) your parameters

runtime depending on interaction, need to iterate procedure
example: strong reduction rules, dynamic reduction to ex.
solvers, heuristically making decisions for next iteration

circumvent worst of worst cases: add randomness

alternative formulation of the problem?

Classic Algo.
Approaches

kernelization



Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group12

Test Instances

public test instances

real-world instances SNAP project (Stanford Large Network Dataset Collection)

look at previous write-ups

randomly generated instances (often hard to solve)

other instances harder to predict (and generate)

course-specific: instances encoding other problems

persistent output =⇒ file output

scripts to run/evaluate large batches

evaluate your solutions =⇒ feasible?

visualize your instances! e.g. graphviz

(fine-grained) reductions?



Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group13

Miscellaneous

start small: have your boilerplate code running

focus on easy instances: solve them fast

input/output, validation, testing (metrics or visuals)

allow unsolved outputs, look at unsolved parts
collect hard instances, investigate them

often tradeoff between simplicity and generality

find approaches to next portion of instances

switch to general solver should not happen too early

interesting insights often found for specific instances, generalized later

Be Curious!

look at existing algorithmic ideas first

original by CGP Grey



Sebastian Angrick, Mirza Redzic – Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group14

Organizational

repository, please invite us

all code, test instances and output, visualizations, etc.

scripts for building, evaluation, ...

readme

explain usage: how to build and run solver, how to evaluate

contribution (bullet points)

what was taken from which source, who worked on what part

tbd: How To Report in December (around 15.12) – announcement via email

Q&A now!

use suitable libraries!


