AT

Karlsruhe Institute of Technology

Fine-grained Algorithm Desigh and Engineering

Solver 101
08.11.2024

KIT — The Research University in the Helmholtz Association www.kit.edu

AT

n
Ove rv I ew Karlsruhe Institute of Technology

® why we do algorithmic challenges

= how challenges work
= what you will learn
® how to structure a solver
m test instances

® organization

2 Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

3

Why Algorithmic Challenges?

AT

Karlsruhe Institute of Technology

m theoretical research focusses on worst case analysis

® or special cases

® in practice, problems are solvable efficiently

at least more efficiently than suspected

= even without special cases

How well do theoretic approaches work?

Can we find new ones?

m petter understand engineers

m baseline: beat general purpose solvers!

GUROBI

OPTIMIZATION

Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering

algo
5 challenges

B 4

™ |||
o
F
><

Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

AT

Challenge Framework

m differences based on specific challenge

® around 10 to 100 participating teams

= challenge announcement, publication of partial test set
@ solver submission until deadline, running scoreboard

m evaluation on (additional) private instances

= similar to public instances — might get you disqualified

® scoring based on feasibility and optimization criterion

= sometimes: points for solver idea

® winning solvers: invitation to associated conference?

4 Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

5

In this course, you will ... A\‘(IT

Karlsruhe Institute of Technology

® ... work on more real-world problems

® ... learn approaches to tackle general algorithmic problems

m ... differentiate between theoretic results and practical possibilites
® ... engineer a solver from scratch

m ... apply standard algorithmic techniques andlearn about their limitations ...
® ... use heuristics and general purpose solvers

® ... learn to evaluate algorithmic approaches

m employers like algorithmic challenges

Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

6

Solver 101 A\‘(IT

Karlsruhe Institute of Technology

= you will change large portions of your code Encapsulation
= employ good engineering practises Comments
Testing

® we might want to understand your code

may use existing solvers

m Disclaimer: Non-exhaustive, personal preference, only basic ideas

Input

Output

® have your own reasonable internal format

= input/output might change depending on source format, visualization, etc.

Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

AT

Where the Magic Happens
Input Output
kernelization Classic Algo. Sfrg%f; General
Approaches Solvers Tools
Param. Algos I Distinguisher
Structural lterative / Verification

Restrictions Dynamic

ZRRrIcIoN Composition

® Example: Vertex Cover

@ Want specific material? Ask us!

7 Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

AT

Techniques

m simplify your problem!
® |ess vertices, edges, solution size, etc.
® (try to) stay away from introducing new problems (weights, etc.)

kernelization

O Q—O = low vertex degree (0, 1, 2, ...)
m Buss-type arguments
O m neighborhood-type arguments

m see Param. Alg. lecture [1]
not necessary for challenge

B unreducible instances Called kernel but for understanding previous solvers

m very important for many solvers

[1] https : //scale.iti.kit.edu/teaching /2024ws/param_algo/, lecture 1 (german only)

8 Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

https://scale.iti.kit.edu/_media/teaching/2024ws/param_algo/01-fpt-grundlagen-print.pdf

Techniques

Classic Algo.
Approaches

9 Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering

Param. Algos

Structural
Restrictions

AT

Karlsruhe Institute of Technology

m see param. alg. lecture
https : //scale.iti.kit.edu/teaching /2024ws/param_algo/

m keep track of your parameters
m structural parameter (e.g. treewidth, planarity), output size

® runtime exponential in parameter, polynomial in input size
® parameter small — fast runtime

® reduce optimization to decision problem

® selected techniques:

m branch & bound
a treewidth-DP

not only in parameterized setting!

m |LP with few variables — reduction to ILP solver

Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

https://scale.iti.kit.edu/teaching/2024ws/param_algo/start

Techniques

General
Purpose
Solvers

AT

lterative / EvalMaxSat (github: FlorentAvellaneda)
Dynamic Heuristics FindMinHS (github: Felerius, i.a. KIT dev-ed)
Application GLPK (GNU Linear Programming Kit)

® NP-membership gives reduction to SAT, (M)ILP
= ridiculously strongly optimized solvers i omer

m baseline for all practical use cases ok for evaluation
LP-solving in P!

m ask for partial solution, dynamically add constraints smaller instances fast

create heuristics

® Decide what to do? Educated guesses with heuristics!
= might speed-up computation

m greedy and local search often helpful

® gapproximate the result
® prune your search-tree!

10 Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

https://github.com/FlorentAvellaneda/EvalMaxSAT
https://github.com/Felerius/findminhs

AT

Techniques

Verification Distinguisher Composition

m fast verification allows better use of heuristics
® many instances special enough to be easily solvable
= what kind of special?

= distinguishing itself complex, keep track of parameters
= degree distribution, guess (& bound) your parameters

® runtime depending on interaction, need to iterate procedure

® example: strong reduction rules, dynamic reduction to ex.
solvers, heuristically making decisions for next iteration

General

Tools m circumvent worst of worst cases: add randomness

® alternative formulation of the problem?

11 Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

12

Test Instances A\‘(IT

Karlsruhe Institute of Technology

® ook at previous write-ups
® public test instances
m real-world instances SNAP project (Stanford Large Network Dataset Collection)
= randomly generated instances (often hard to solve)

® other instances harder to predict (and generate)

® course-specific: instances encoding other problems (fine-grained) reductions?

m persistent output — file output
® evaluate your solutions — feasible?

m visualize your instances! e.g. graphviz

® scripts to run/evaluate large batches

Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

AT

Miscellaneous

m start small: have your boilerplate code running
= input/output, validation, testing (metrics or visuals) Be Curious!

m focus on easy instances: solve them fast
® allow unsolved outputs, look at unsolved parts
= collect hard instances, investigate them
= find approaches to next portion of instances

® switch to general solver should not happen too early
» often tradeoff between simplicity and generality
= interesting insights often found for specific instances, generalized later

® [ook at existing algorithmic ideas first

13 Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

AT

Organizational

. repository, please invite us use suitable libraries!
® all code, test instances and output, visualizations, etc.

® scripts for building, evaluation, ...

m readme
= explain usage: how to build and run solver, how to evaluate
= contribution (bullet points)

= what was taken from which source, who worked on what part

® tbd: How To Report in December (around 15.12) — announcement via email

Q&A now!

14 Sebastian Angrick, Mirza Redzic — Fine-grained Algorithm Design and Engineering Institute of Theoretical Informatics, Algorithms & Complexity Theory Group

