2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2024/2025

Lösung!

- Schreiben Sie Ihren Namen und Matrikelnummer auf das Deckblatt. Beschriften Sie jedes Aufgabenblatt mit Ihrer Matrikelnummer.
- Schreiben Sie die Lösungen auf die Aufgabenblätter und Rückseiten. Am Ende der Klausur sind zusätzliche Leerseiten. Fordern Sie zusätzliches Papier bitte nur an, wenn nötig.
- Die Tackernadel darf nicht gelöst werden, Sie dürfen allerdings die NP-vollständigen Probleme im Anhang abtrennen.
- Begründen/Beweisen Sie Ihre Antworten ausreichend, wenn "Zeigen/Beweisen Sie, dass" gefordert wird.
- \mathbb{N}_0 bezeichnet die natürlichen Zahlen inklusive 0, \mathbb{N} die natürlichen Zahlen ohne 0.
- Als Hilfsmittel ist ein handbeschriebenes A4-Papier erlaubt.

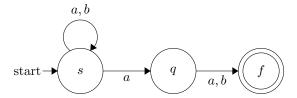
• Einlesezeit: 15 min Bearbeitungszeit: 2 h

	Mögliche Punkte				Erreichte Punkte					
	a	b	c	d	Σ	a	b	c	d	Σ
Aufg. 1	2	4	4	-	10					
Aufg. 2	3	2	3	1	9					
Aufg. 3	1	2	4	2	9					
Aufg. 4	2	2	6	ı	10					
Aufg. 5	2	2	4	4	12					
Aufg. 6	1	2	5	2	10					
Σ					60					

Problem 1: Warmup

2 + 4 + 4 = 10 Punkte

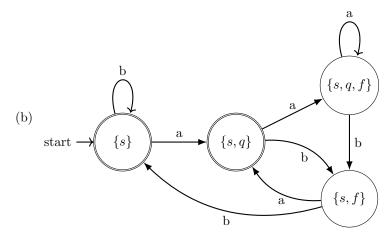
Gegeben sei der folgende NEA \mathcal{A} über $\Sigma = \{a, b\}$:



- (a) Geben Sie einen regulären Ausdruck an, der L(A) beschreibt.
- (b) Geben Sie einen DEA an, der die Sprache $(L(A))^C$ akzeptiert. Die Übergangsfunktion des DEAs $\delta: Q \times \Sigma \to Q$ soll total definiert sein.
- (c) Seien r_1, r_2 beliebige reguläre Ausdrücke. Geben Sie einen Algorithmus an, der entscheidet, ob es ein Wort $w \in \Sigma^*$ gibt, sodass $w \in L(r_1)^C \cap L(r_2)^C$.

Lösung:

(a) $(a \cup b)^*a(a \cup b)$



(c) Seien A_1, A_2 jeweils DEAs die $L(r_1)$ und $L(r_2)$ akzeptieren. Wir konstruieren nun die Komplementautomaten \hat{A}_1, \hat{A}_2 und bilden den Produktautomaten $A = \hat{A}_1 \times \hat{A}_1$. Dieser erkennt offensichtlich die Sprache $L(r_1)^C \cap L(r_2)$.

Um zu entscheiden ob es ein Wort $w \in L(A)$ gibt, lösen wir das Leerheitsproblem (i.e. ob gilt dass $L(A) = \emptyset$). Dazu führen wir eine BFS beginned von jedem Startzustand aus. Gibt es einem erreichbaren Endzustand, so gilt $L(A) \neq \emptyset$ und somit existiert ein Wort $w \in \Sigma$, sodass $w \in L(r_1)^C \cap L(r_2)^C$. Anderenfalls ist die Sprache des Automaten leer und es existiert kein solches w.

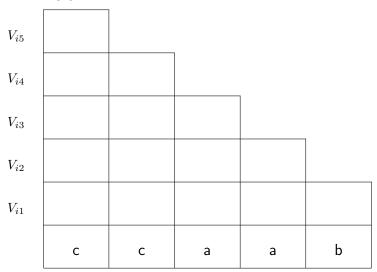
Problem 2: Kontextfreie Sprachen

3+2+3+1 = 9 Punkte

- (a) Zeigen Sie, dass die Sprache $L_1 := \{c^{2n}b^{3n} \mid n \in \mathbb{N}_0\}$ nicht regulär ist.
- (b) Zeigen Sie, dass die Sprache L_1 kontextfrei ist, indem Sie eine kontextfreie Grammatik G angeben, die L_1 akzeptiert.
- (c) Betrachten Sie die folgende kontextfreie Grammatik $G = (\{S, T, U, A, B, C\}, \{a, b, c\}, S, R)$ in Chomsky-Normalform mit den folgenden Regeln R:

$$\begin{split} S &\to TS \mid CT \mid a \\ T &\to AU \mid TT \mid c \\ U &\to SB \mid AB \\ A &\to a \\ B &\to b \\ C &\to c \end{split}$$

Geben Sie an, ob das Wort ccaab zur Sprache $\mathcal{L}(G)$ gehört. Wenden Sie hierzu den CYK-Algorithmus an. Benutzen Sie die unten gegebene Tabelle.



(d) Welche Bedingung muss für ein Nichtterminal T gelten, damit $T \in V_{ij}$ im CYK-Algorithmus? Hier bezeichnet V_{ij} wie in der Vorlesung die Zelle in der i-ten Spalte und der j-ten Zeile, nummeriert wie in der Tabelle.

Lösung:

(a) Wir widerlegen das Pumping-Lemma für reguläre Sprachen:

Sei $w = c^{2n}b^{3n} \in L_1$ der Länge |w| = 5n > n für ein beliebiges n.

Für alle Zerlegungen der Form w = uvx sodass $|uv| \le n$ mit $v \ne \varepsilon$ gilt, dass $uv = c^{|uv|}$ und $x = c^{2n-|uv|}b^{3n}$.

Wir wählen i=0 und es gilt $uv^0x=c^{|u|}c^{2n-|uv|}b^{3n}=c^{2n-|v|}b^{3n}\not\in L_1$ da $v\neq\varepsilon$ und somit |v|>0.

(b) Wir geben die folgende Kontextfreie Grammatik an. Sei $G=(\{S,B,C\},\{b,c\},S,R)$ mit den folgenden Regeln:

$$\begin{split} S &\to CCSBBB \mid \varepsilon \\ C &\to c \\ B &\to b \end{split}$$

	V_{i5}	$\{T,S\}$				
(c)	V_{i4}	Ø	$\{T,S\}$			
	V_{i3}	$\{S\}$	Ø	$\{T\}$		
	V_{i2}	$\{T,C\}$	$\{S\}$	Ø	$\{U\}$	
	V_{i1}	$\{T,C\}$	$\{T,C\}$	$\{S,A\}$	$\{S,A\}$	$\{B\}$
		С	С	a	a	b

(d) Ein Nichtterminal steht T in Zelle V_{ij} bei Anwendung des CYK-Algorithmus auf ein Wort w genau dann wenn $T \stackrel{*}{\longrightarrow} w_i, \dots, w_{i+j-1}$.

Problem 3: Approximationsalgorithmen

$$1 + 2 + 4 + 2 = 9$$
 Punkte

In dieser Aufgabe betrachten wir das Problem 3-HITTING SET.

3-HITTING SET

Gegeben: Eine Grundmenge M und Teilmengen $A_1, \ldots, A_n \subseteq M$, mit $|A_i| \leq 3$ für alle $i \in \{1, \ldots, n\}$. **Problem:** Berechne eine Menge $Z \subseteq M$ mit minimaler Kardinalität, sodass für alle $i \in \{1, \ldots, n\}$ gilt $Z \cap A_i \neq \emptyset$.

(a) Gegeben der folgenden Instanz von 3-Hitting Set über der Grundmenge $\{1, \dots, 8\}$. Geben Sie eine optimale Lösung an.

$$A_1 = \{2, 4, 5\}$$
 $A_2 = \{1, 2, 5\}$ $A_3 = \{1, 3, 8\}$ $A_4 = \{1, 4, 7\}$ $A_5 = \{4, 6, 7\}$ $A_6 = \{4, 5, 8\}$

Wir geben den folgenden Algorithmus an:

Algorithmus A: Greedy 3-Hitting Set

Input: $(A_1, A_2, ..., A_n)$ mit $|A_i| \leq 3$.

- 1 $Z \leftarrow \emptyset$
- 2 while $\exists i:Z\cap A_i=\emptyset$ do
- $z \mid Z \leftarrow Z \cup A_i$
- $_{4}$ return Z
- (b) Zeigen Sie, dass Algorithmus \mathcal{A} ein korrekter Approximationsalgorithmus für 3-Hitting Set ist.
- (c) Zeigen Sie, dass Algorithmus \mathcal{A} eine Approximation mit relativer Gütegarantie 3 erreicht.
- (d) Geben Sie für jedes $n \in \mathbb{N}$ eine Instanz $I_n = (M, A_1, \dots, A_n)$ von 3-Hitting Set an, sodass ein minimales 3-Hitting Set Größe OPT hat und $\mathcal{A}(I_n) = 3 \cdot OPT$ gilt.

Lösung:

- (a) Die (einzig) optimale Lösung ist $\{1, 4\}$.
- (b) Wenn der Algorithmus terminiert, gilt klar dass $Z \cap A_i \neq \emptyset$ für all $i \in \{1, ..., n\}$, somit müssen wir nur argumentieren, dass er terminiert. Da in jedem Durchlauf der Schleife mindestens ein weiteres Set A_i mit $A_i \cap Z = \emptyset$ zu Z hinzugefügt wird, terminiert der Algorithmus nach maximal n Schritten.
- (c) Sei OPT(I) eine optimale Lösung und $Z:=\mathcal{A}(I)$ die Lösung des Greedy Algorithmus für eine gegebenen Instanz I von 3-Hitting Set.

Betrachte die A_i die von \mathcal{A} zur Lösung Z hinzugefügt wurden. Es gilt $A_i \cap A_j = \emptyset$ for $i \neq j \in [n]$. Sei nun also $J = \{i \mid A_i \text{ wurde von } \mathcal{A} \text{ zu } Z \text{ hinzugefügt}\}.$

Dann gilt $OPT \ge |J|$, da jedes A_i mit mindestens einem eigenen Element abgedeckt werden muss, da die Mengen disjunkt sind. Ferner gilt $Z = 3 \cdot |J|$, da für alle $i \in [n]$ gilt, dass $|A_i| = 3$.

Somit folgt

$$\frac{|\mathcal{A}(I)|}{|OPT(I)|} \leqslant \frac{3|J|}{|J|} = 3$$

(d) Wir definieren eine Instanz $I_n=(M,\{A_1,\dots,A_n\})$ wie folgt:

$$M = \{1, \dots, 3n\}$$

$$A_i = \{3i, 3i + 1, 3i + 2\} \quad \forall i \in \{0, \dots, n - 1\}$$

Nun gilt dass Z=M=3n, da \mathcal{A} jedes Set A_i zu Z hinzufügt, da alle A_i paarweise disjunkt sind. Die optimale Lösunge beinhaltet notwendigerweise genau eine Element aus jedem A_i . Somit gilt $3 \cdot |OPT| = 3 \cdot n = \mathcal{A}(I_n)$

Problem 4: NP-Vollständigkeit

2 + 2 + 6 = 10 Punkte

In dieser Aufgabe betrachten wir gewichtete Multigraphen.

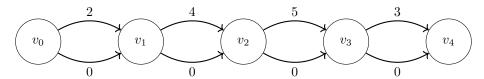
Ein gewichteter Multigraph ist ein Graph G = (V, E, c), bei dem zwei Knoten u und v mit mehr als einer Kante verbunden werden können, wobei jede Kante $e \in E$ dabei ein Gewicht $c(e) \in \mathbb{N}_0$ hat. Das Gewicht eines Pfades $P = e_1, \ldots, e_n$ ist gegeben durch $c(P) = \sum_{e \in P} c(e)$.

GEWICHTETE MULTIGRAPH ERREICHBARKEIT

Gegeben: Ein gerichteter, gewichteter Mutigraph G=(V,E,c) und eine natürliche Zahl $t\in\mathbb{N}_0$ sowie zwei Knoten $u,v\in V$.

Problem: Gibt es einen Pfad von u nach v in G mit Gewicht genau t?

(a) Betrachten Sie den folgenden gewichteten Multigraphen G:



Geben Sie für die folgenden Eingaben an, ob es sich um eine Ja oder Nein-Instanz handelt:

(u,v,t)	Ja/Nein-Instanz
$(v_0, v_4, 7)$	
$(v_2, v_3, 2)$	
$(v_0, v_3, 2)$	
$(v_4, v_1, 12)$	

- (b) Zeigen Sie, dass Gewichtete Multigraph Erreichbarkeit $\in \mathsf{NP}$ gilt.
- (c) Zeigen Sie, dass GEWICHTETE MULTIGRAPH ERREICHBARKEIT NP-schwer ist. Reduzieren Sie hierzu von einem der NP-vollständigen Probleme im Anhang.

 Tipp: Betrachten Sie den Graphen aus Aufgabenteil a)

Lösung:

	(w,t)	Ja/Nein-Instanz		
(a)	$(v_0, v_4, 7)$	Ja		
	$(v_2, v_3, 2)$	Nein		
	$(v_0, v_3, 2)$	Ja		
	$(v_4, v_1, 12)$	Nein		

- (b) Gegeben einer Instanz (G, u, v, t) konstruieren wir einen polynomielle Orakel-TM auf die folgende Art und Weise: Das Orakle schreibt uns als Zertifikat eine Pfad e_1, \ldots, e_p auf das Band. Wir prüfen nun folgendes:
 - Es handelt sich um einen korrekten Pfad in G wobei $e_1 = u$ und $e_p = v$. Überprüfung geschieht in $\mathcal{O}(p)$
 - Die Summer der Gewichte des Pfades beträgt genau t. Hierzu prüfen wir genau p Kanten und summieren ihre Gewichte auf, das geschieht in $\mathcal{O}(p)$

Sind diese Eigenschaften erfüllt akzeptieren wir, ansonsten lehnen wir ab. Die Orakel-Turingmaschine läuft somit in polynomieller Gesamtzeit $\mathcal{O}(p) = \mathcal{O}(m)$.

(c) Wir reduzieren von SubsetSum. Gegeben einer Instanz von SubsetSum (a_1, \ldots, a_n, t) konstruieren wir folgenden Graphen G = (V, E, c)

$$V = \{v_0\} \cup \{v_i \mid a_i \in \{a_1, \dots, a_n\}\}$$

$$E_w = \{e_i \mid e_i := (v_{i-1}, v_i), i \in [n]\}$$

$$E_0 = \{e'_i \mid e'_i := (v_{i-1}, v_i), i \in [n]\}$$

$$E = E_w \cup E_0$$

mit

$$c(e_i) = a_i \quad e_i \in E_w$$
$$c(e'_i) = 0 \quad e'_i \in E_0$$

Schließlich wählen wir t' = t und setzen $u = v_0$ sowie $v = v_n$ um die Instanz (G, v_0, v_n, t') zu erhalten. **Laufzeit:** Der Graph G hat n + 1 Knoten so wie 2n Kanten, somit lässt sich dieser in Zeit $\mathcal{O}(n)$ konstruiert. Wir können t' in Zeit $\mathcal{O}(\log(t))$ kopieren, sowie u, v in konstanter Zeit.

Korrekheit:

 \Rightarrow : Sei (a_1, \ldots, a_n, t) eine Ja-Instanz für SubsetSum. Es existiert also ein $I \subseteq \{1, \ldots, n\}$, sodass $\sum_{i \in I} a_i = t$.

Wir konstruieren nun eine Pfad der Länge n von v_0 zu v_n in G auf die folgende Art und Weise:

$$P = e_1, \ldots, e_n$$

mit $e_i = (v_{i-1}, v_i)$. Welche Multikanten wir wählen hängt nun von A ab: Wir wählen $e_i \in E_w$ wenn $i \in I$ andernfalls wählen wir $e_i \in E_0$.

P hat ein Gewicht von

$$c(P) = \sum_{i=1}^{n} c(e_i) = \sum_{i \in I} c(e_i) + \sum_{i \notin I} c(e_i) = \sum_{i \in I} a_i + \sum_{i \notin I} 0 = t = t'.$$

und somit ist (G, v_0, v_n, t') eine Ja-Instanz für Gewichtete Multigraph Erreichbarkeit.

 \Leftarrow : Gegeben einer Ja-Instanz (G, v_0, v_n, t') für GEWICHTETE MULTIGRAPH ERREICHBARKEIT, konstruieren wir eine SubsetSum Lösung auf die folgende Art:

Sei P der Pfad von v_0 nach v_n mit Gewicht t. Aufgrund der Wahl von G hat dieser genau n Kanten, da G gerichtet und azyklisch ist sowie Kanten lediglich zwischen v_{i-1} und v_i existieren für alle $i \in [n]$. Wir schreiben $P = e_1, \ldots, e_n$ und wählen nun $I = \{i \mid c(e_i) \neq 0\}$. Damit gilt folglich:

$$w=\sum_{i\in I}a_i=\sum_{e_i\in P, c(e_i)\neq 0}c(e_i)=\sum_{e_i\in P}=t'=t.$$

Somit hat unsere Lösung I für SubsetSum Gewicht t und ist somit eine Ja-Instanz.

Problem 5: Zeige oder Widerlege

2 + 2 + 4 + 4 = 12 Punkte

(a) Jeder reguläre Sprache ist in NP.

Kreuzen Sie an: \Box Ich zeige die Aussage. \Box Ich widerlege die Aussage.

- (b) Wenn $L_1 \cup L_2$ kontextfrei ist, dann ist mindestens eine der Sprachen L_1 oder L_2 bereits kontextfrei. Kreuzen Sie an: \square Ich zeige die Aussage. \square Ich widerlege die Aussage.
- (c) Sei $L\subseteq\{0,1\}^*$ eine Sprache, sodass L semi-entscheidbar und L^C nicht semi-entscheidbar ist. Die Sprache

$$L' = \{0w \mid w \in L\} \cup \{1w \mid w \not\in L\}$$

ist semi-entscheidbar.

Kreuzen Sie an: \Box Ich zeige die Aussage. \Box Ich widerlege die Aussage.

(d) Seien $L_1, \ldots, L_k \subseteq \Sigma^*$ semi-entscheidbar. Außerdem gelte, dass die Sprachen L_i eine Partition von Σ^* bilden. Das heißt, die Sprachen L_i sind paarweise disjunkt, also für i < j gilt $L_i \cap L_j = \emptyset$ und $\bigcup_{i=1}^k L_i = \Sigma^*$.

Es gilt, dass jede Sprache L_i für $i \in \{1, \dots, k\}$ entscheidbar ist.

Kreuzen Sie an: \Box Ich zeige die Aussage. \Box Ich widerlege die Aussage.

Lösung:

(a) Zeige:

Sei L regulär. Dann gibt es einen DEA \mathcal{A} mit $\mathcal{L}(\mathcal{A}) = L$, der diese Sprache in polynomial Zeit akzeptiert, somit gilt $L \in P \subseteq NP$.

(b) Widerlege

Wähle eine Sprache L, so dass weder L noch L^C kontextfrei sind (z.B. Halteproblem). Dann gilt $L \cup L^C = \Sigma^*$, was jedoch regulär und somit kontextfrei ist.

(c) Widerlege:

Angenommen L' sei semi-entscheidbar. Dann existieret eine TM T' mit $\mathcal{L}(T') = L'$.

Wir konstruieren nun eine TM T wie folgt: Schreibe eine 1 vor die Eingabe w und simuliere nun T'. Akzeptiere genau dann wenn T' akzeptiert, andernfalls gehe in eine Endloschleife.

Nun gilt allerdings, dass T die Sprache L^C semi-entscheidet.

$$w \in \mathcal{L}(T) \Leftrightarrow 1w \in \mathcal{L}(T')$$

 $\Leftrightarrow w \notin L$
 $\Leftrightarrow w \in L^C$

Somit war die Annahme falsch und L' ist nicht semi-entscheidbar.

(d) Zeige:

(e) Wie beweisen die Aussage per Widerspruch. Angenommen es gäbe ein j, sodass L_j nicht entscheidbar ist, dann ist das Komplement L_j^C nicht semi-entscheidbar. Nach Vorrausetzung wissen wir aber

$$\bigcup_{i=1}^{k} L_i = \Sigma^*
\Leftrightarrow \bigcup_{i=1, i \neq j}^{k} L_i = \Sigma^* \setminus L_j
\Leftrightarrow \bigcup_{i=1, i \neq j}^{k} L_i = L_j^C$$

Da semi-entscheidbare Sprache unter Vereinigung abgeschlossen sind, ist L_j^C auch semi-entscheidbar. Somit gilt die Annahme nicht und alle L_i für $i \in [k]$ sind entscheidbar.

Problem 6: Abgeschlossenheit

1+2+5+2 = 10 Punkte

Sei Σ ein festes endliches Alphabet. Ein Wort $w = a_1 \dots a_n$ ist eine Teilfolge von $v = b_1 \dots b_m$, falls es Indizes $1 \leq i_1 < i_2 \dots < i_n \leq m$ gibt, sodass $a_j = b_{i_j}$ für jedes $j \in \{1, \dots, n\}$. Zum Beispiel ist abac eine Teilfolge von adbdadc. Wir schreiben $w \leq v$ falls w eine Teilfolge von v ist.

(a) Gegeben seien folgende Wörter über dem Alphabet $\Sigma = \{a, b, c\}$. Geben Sie an, welche Wörter keine Teilfolge eines anderen gegebenen Wortes sind. In anderen Worten: geben Sie alle Wörter w an, sodass es kein $w' \neq w$ gibt mit $w \leq w'$.

acbacb becebbb ceaebba cab ebabac

(b) Der Aufwärtsabschluss von einer Sprache L ist definiert als $\uparrow L := \{w \in \Sigma^* \mid \exists v \in L : v \leq w\}$. Der Abwärtsabschluss von einer Sprache L ist definiert als $\downarrow L := \{w \in \Sigma^* \mid \exists v \in L : w \leq v\}$.

Geben Sie für die Sprache $\{a^nb^n\mid n\in\mathbb{N}\}$ jeweils den Aufwärts- und Abwärtsabschluss an.

(c) Eine Sprache L über dem Alphabet Σ heißt aufwärts abgeschlossen, wenn

$$\forall v \in L, \ \forall w \in \Sigma^* : v \leq w \implies w \in L.$$

Zeigen Sie, dass jede aufwärts abgeschlossene Sprache regulär ist. Sie dürfen folgendes Resultat ohne Beweis benutzen:

Higman's Lemma: Für jede unendliche Folge an Wörtern $(w_i)_{i \in \mathbb{N}}$ über einem endlichen Alphabet Σ , gibt es je zwei Indizes i < j, sodass $w_i \leq w_j$ gilt.

(d) Eine Sprache L über dem Alphabet Σ heißt abwärts abgeschlossen, wenn

$$\forall v \in L, \ \forall w \in \Sigma^* \colon w \leq v \implies w \in L.$$

Zeigen Sie, dass jede abwärts abgeschlossene Sprache regulär ist.

Lösung:

- (a) Worte die keine Teilfolge eines anderen Wortes sind, sind {acbacb, bcccbbb, ccacbba, cbabac}.
- (b) Der Aufwärtsabschluss der Sprache ist gegeben durch $L((a \cup b)^*ab(a \cup b)^*)$.

Der Abwärtsabschluss der Sprache ist gegeben durch $L(a^*b^*)$

(c) Gegeben einem Wort $w \in \Sigma$ können wir einen regulären Ausdruck konstruieren, der alle Worte akzeptiert, von denen w ein Teilwort ist. Hierzu sei $\alpha(w) = \Sigma^* w_1 \Sigma^* \dots \Sigma^* w_n \Sigma^*$.

Mit Higman's Lemma wissen wir, dass L nur endlich viele Worte enthalten kann, die keine Teilwort von einander sind. Wir nennen diese endliche Menge an Wörtern W. Wir konstruieren nun den regulären Ausdruck $A = \bigcup_{w \in W} \alpha(w)$. Dieser erkennt L, da jedes Wort $w \in L$ entweder in W enthalten ist oder es gibt ein $w' \in W$, so dass $w' \leq w$. Somit ist L regulär.

(d) Wir betrachten das Komplement L^C . Für jedes Wort $w \in L$ gilt, dass jedes Teilwort v von w ebenfalls in der Sprache L ist. Betrachten wir nun ein Wort $w' \in L^C$. Gäbe es v, sodass $w' \preccurlyeq v$ wobei $v \in L$, dann gilt nach Abwärtsabgeschlossenheit, dass $w' \in L$, ein Widerspruch. Folglich gilt für jedes v mit $w' \preccurlyeq v$, dass $v \not\in L \iff v \in L^C$. Also ist das Komplement einer Abwärtsabgeschlossenen Sprache Aufwärtsabgeschlossen.

Da reguläre Sprachen unter Komplementbildung abgeschlossen sind, ist mit Aufgabenteil (c) also auch L regulär.

Die folgenden Probleme können Sie als NP-vollständig annehmen und für Reduktionen verwenden.

CLIQUE

Gegeben: Ein ungerichteter Graph G = (V, E) und eine Zahl k < |V|.

Problem: Gibt es eine Clique der Größe mindestens k?

Subset Sum

Gegeben: Zahlen $a_1 \dots a_n \in \mathbb{N}$, und Wert $t \in \mathbb{N}$. **Problem:** Gibt es $I \subseteq \{1, \dots, n\}$, sodass $\sum_{i \in I} a_i = t$?

HAMILTON-KREIS

Gegeben: Ein ungerichteter Graph G = (V, E).

Problem: Gibt es einen Kreis in G, der jeden Knoten genau einmal besucht?

3-COLOR

Gegeben: Ein ungerichteter Graph G = (V, E).

Problem: Gibt es eine Funktion $c: V \to \{1, 2, 3\}$, sodass für jede Kante $\{u, v\}$ gilt $c(u) \neq c(v)$?

PARTITION

Gegeben: Zahlen $a_1 \dots a_n \in \mathbb{N}$.

Problem: Gibt es $I \subseteq \{1, ..., n\}$, sodass $\sum_{i \in I} a_i = \sum_{j \notin I} a_j$?

3-Sat

 ${\bf Gegeben:}$ Menge Uan aussagenlogischen Variablen und eine Menge C von Klauseln mit genau drei

Literalen.

Problem: Gibt es eine Wahrheitsbelegung der Variablen aus U, sodass alle Klauseln aus C erfüllt sind?

SAT

Gegeben: Menge U an aussagenlogischen Variablen und eine Menge C von Klauseln.

Problem: Gibt es eine Wahrheitsbelegung der Variablen aus U, sodass alle Klauseln aus C erfüllt sind?

Set Cover

Gegeben: Eine Grundmenge M, Teilmengen $U_1, \ldots, U_m \subseteq M$ mit $\bigcup_{i=1}^m U_i = M$, sowie eine Zahl c.

Problem: Gibt es eine Indexmenge $I \subseteq \{1, ..., m\}$ mit $|I| \leq c$ und $\bigcup_{i \in I} U_i = M$?

Dominating Set

Gegeben: Ein Graph G = (V, E) und eine Zahl k.

Gesucht: Eine Teilmenge $D \subseteq V$, sodass $|D| \leq k$ und für alle Knoten $v \in V$ gilt $v \in D$ oder v hat einen

Nachbarn $u \in D$, also $\{u, v\} \in E$.